
SE	3200:	Web	Application	Development	I
Assignment:	Authentication
Requirements

Registration

Define	a	resource	to	represent	a	user.	Its	attributes	should	include,	at	a	minimum,	first	name,	last
name,	email,	and	encrypted	password.

Using	SQLite,	create	a	valid	database	schema	to	store	records	for	the	user	resource	and	its
representative	data	model.

As	part	of	your	server	application,	create	a	RESTful	API	endpoint	that	will	create	a	new	user	record,
using	the	provided	data	attributes.	Be	sure	to	encrypt	the	user’s	password	using	a	secure	password
hashing	method,	and	discard	the	plain-text	password.

As	part	of	your	client	application,	provide	a	user	interface	that	allows	the	user	to	register	by	providing
the	required	information,	and	informs	the	user	upon	successful	registration.

At	a	minimum,	validate	that	the	email	entered	by	the	user	is	unique	prior	to	creating	a	new	user	record,
and	provide	feedback	to	the	user	if	it	is	not.	This	should	be	coordinated	between	the	server	and	client
applications,	via	the	same	API	endpoint	described	above.	The	logic	to	validate	uniqueness	should	be
performed	by	the	server	API.

Authentication

As	part	of	your	server	application,	create	a	RESTful	API	endpoint	that	will	authenticate	a	user’s
provided	credentials.	If	the	user	cannot	be	identified,	or	if	the	password	does	not	match	the	previously-
encrypted	password,	then	an	appropriate	error	response	should	be	returned.	Otherwise,	an	appropriate
success	response	should	be	returned	that	includes	basic	data	attributes	for	the	authenticated	user	that
may	be	used	by	the	client	application.

As	part	of	your	client	application,	provide	a	user	interface	that	allows	the	user	to	enter	their	credentials
to	be	authenticated,	and	informs	the	user	upon	either	successful	or	failed	authentication.

Implement	a	basic	in-memory	session	store	to	save	temporary	data	related	to	the	user’s	session,	using
cookies	appropriately	to	associate	the	session	ID	with	the	user	agent.	Upon	successful	authentication,
use	the	session	store	to	persist	the	user’s	authenticated	state	and	identity.	Do	not	add	superfluous	data
to	the	session	store.

Basic	Authorization

Restrict	at	least	one	other	resource	represented	by	your	application	(different	than	the	user	resource)
such	that	it	may	only	be	read	and	managed	by	an	authenticated	user.	This	should	include	all	read	and
write	operations	on	the	resource	supported	by	your	server	and	client.

The	authorization	logic	should	be	implemented	on	both	your	client	and	server	applications.

Your	client	application	should	not	reveal	user	interface	elements	related	to	a	restricted	resource
until	a	user	has	successfully	authenticated.

Likewise,	your	server	application	should	not	allow	unauthenticated	access	to	any	API	endpoint
related	to	a	restricted	resource.	If	unauthenticated	access	is	attempted,	an	appropriate	error
response	should	be	returned.

It	is	not	necessary	to	discriminate	between	different	users;	all	authenticated	users	may	be	given	equal
permissions.

General

Your	client	and	server	application	should	conform	to	the	same	standards	and	conventions	as	required	by
previous	asignments,	including:	encapsulation	of	database	logic;	proper	implementation	of	REST



standards;	appropriate	use	of	HTTP	methods,	status	codes,	and	headers;	correct	implementation	of
common	error	responses	(404,	etc.);	CORS.

All	data	communicated	between	the	client	application	and	the	server	API	should	be	implemented	using
Ajax	requests.

You	may	take	liberties	to	modify	your	application’s	features	and	purpose	from	that	described	above,	but
the	overall	specifications	and	structure	listed	above	should	still	be	met.

Make	your	application	look	professional	and	presentable.	Use	valid	HTML	and	CSS	to	structure	and
style	your	application.

No	third-party	JavaScript	or	CSS	libraries	or	frameworks	may	be	used	without	prior	instructor
permission.

Documentation

The	following	items	should	be	clearly	detailed	and	documented	in	the	 README.md 	within	your	Git
repository:

The	names	and	attributes	of	each	of	your	resources.

The	database	schema	which	represents	your	resources,	documented	as	valid	SQLite	 CREATE	TABLE
queries.

All	REST	endpoints	implemented	by	your	API	server.	Include	the	name,	path,	and	HTTP	method	for
each.

The	password	hashing	method	and	any	relevant	parameters	used	by	your	application.

Use	Markdown	to	structure	and	style	the	content	within	your	 README.md .

Submission
1.	 Submit	your	project	using	Git	and	GitHub.	Start	by	creating	a	repo	for	this	assignment	here.
2.	 Show	your	completed	assignment	to	the	instructor	during	class	or	office	hours	to	receive	credit.

https://guides.github.com/features/mastering-markdown/
https://classroom.github.com/a/Wizydj2T

