
Good	job!	You’ve	almost	isolated	the	problem.	Narrowing	it	down	from	“somewhere	in	the	program”	to	a
specific	function	is	great.

I	view	debugging	as	a	problem	in	finding	a	needle	in	a	haystack.	The	needle	is	the	line	(or	lines)	that	do	not
have	the	intended	results,	and	the	haystack	is	the	collect	of	all	lines	in	the	program.	My	strategy	is	usually
similar	to	dividing	the	haystack	into	several	smaller	stacks	and	using	a	metal	detector	to	find	which	of	the
smaller	stacks	has	the	needle.	Then,	take	that	smaller	stack	and	divide	it	into	even	smaller	stacks,	using	the
metal	detector	to	again	identify	the	smaller	stack	that	has	the	needle.	If	I	repeat	this	process,	eventually	my
division	into	smaller	stacks	will	be	separating	single	stalks	of	hay	and	the	needle.

Since	you’ve	identified	a	function	that	is	the	problem,	you’ve	already	done	a	couple	of	the	“split	the	haystack
up”	steps.	Now,	this	function	probably	has	5-10	lines	of	code.	Each	is	potentially	a	hay	stalk	or	a	needle.
There	might	be	multiple	needles.

Now,	I	would	want	to	see	what	each	line	of	code	does	as	the	function	processes	its	input	parameters.	One
simple	way	to	do	this	is	to	add	print()	statements	in	function	to	display	the	values	received	by	the	function,
and	the	values	of	each	variable	as	it	changes.	Then,	run	the	function.	This	is	usually	accomplished	by
running	the	unit	tests.	You	should	be	able	to	find	the	output	of	the	print()	statements	in	the	output	from	the
unit	tests	every	time	the	function	is	called.

Pick	one	set	of	output	lines	that	correspond	to	the	execution	of	the	function	when	it	gives	an	incorrect
result.	Look	at	the	output	and	the	function’s	source	code	at	the	same	time	to	observe	where	each	value	came
from.	If	possible,	identify	the	first	place	where	a	value	isn’t	what	it	should	be.	The	line	that	produced	that
incorrect	result	is	your	first	needle.	Now	all	you	have	to	do	is	analyze	that	line	and	the	other	lines	in	its
neighborhood	to	decide	how	to	get	the	desired	result.

I	often	find	that	students	feel	that	this	debugging	process	is	too	much	work,	and	takes	too	much	time.	So,
they	spend	their	time	staring	at	the	function	trying	to	figure	out	what’s	wrong	with	it,	and	ultimately	get
very	frustrated.	So,	don’t	be	one	of	those	students.	A	major	part	of	programming	is	verifying	code	that	has
been	written	works	correctly,	and	fixing	those	things	that	aren’t	correct.	If	you	don’t	develop	a	process	for
identifying	and	fixing	errors,	you’ll	be	often	be	frustrated.	There	are	better	debugging	techniques	than
print()	statements,	but	they	all	rely	on	observing	the	behavior	of	code,	and	you	don’t	have	to	learn	anything
new	to	use	print().

Ask	me	about	“True	Laziness”	sometime.


