Intelligent Agents

Probability & Bayesian Reasoning

Curtis Larsen

Utah Tech University—Computing

Fall 2025

Motivation — Why Uncertainty?

- ► Al systems operate in noisy, unpredictable environments.
- Sensors fail, information is incomplete; actions have uncertain results; environments are dynamic.
- We need a principled framework to model and reason under uncertainty.

Limitations of Deterministic Logic

- ► Logic uses crisp truth values (True/False) no notion of likelihood.
- Ambiguity and multiple causes break brittle rules.
- Example: "fever ⇒ flu" ignores colds, COVID, etc.

Truth Table: $(fever) \Rightarrow (flu)$

fever	flu	$fever \Rightarrow flu$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

Example Conditional Probabilities (Disease given fever is True/False)

	$P(Flu\mid \cdot)$	$P(Cold\mid \cdot)$	$P(COVID \mid \cdot)$
Fever = True	0.40	0.20	0.25
Fever = False	0.03	0.15	0.02

Real-World Uncertainty

- Self-driving cars: imperfect sensors, unpredictable agents.
- Medical diagnosis: overlapping symptoms, imperfect tests.
- Spam filtering: unusual but benign messages.

Foundations of Probability

- ▶ Random variable: A variable whose values come from a sample space of possible outcomes.
- **Sample space** (Ω) : The complete set of all possible outcomes.
- Probability distribution P: Assigns a likelihood to each outcome in 2 Ω .

Uniform distribution (fair die)

Axioms of probability:

- Non-negativity: P(A) > 0
- Normalization: $P(\Omega) = 1$
- Additivity (disjoint): If $A \cap B = \emptyset$, then $P(A \cup B) = P(A) + P(B)$
- ► Events: Subsets of the sample space (e.g., "die shows an even number").
- **Bounds:** 0 < P(A) < 1.

Uniform distribution over outcomes 1–6

Two Random Variables: Rolling Two Dice

- **Setup:** Roll two fair six-sided dice. Define random variables X (die 1) and Y (die 2).
- ▶ Sample space: $\Omega = \{1, ..., 6\} \times \{1, ..., 6\}$ All ordered pairs (i, j), total of 36 outcomes.
- ▶ **Joint distribution (uniform):** $P(X = i, Y = j) = \frac{1}{36}$ for all $i, j \in \{1, ..., 6\}$.
- ► Event example (sum = 7): $A = \{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)\}$ $P(A) = \frac{6}{26} = \frac{1}{6}$.

Two Dice: Full Sample Space

Sample space: $\Omega = \{(i, j) : i, j \in \{1, ..., 6\}\}$

$$(1,1), (1,2), (1,3), (1,4), (1,5), (1,6) \\ (2,1), (2,2), (2,3), (2,4), (2,5), (2,6) \\ (3,1), (3,2), (3,3), (3,4), (3,5), (3,6) \\ (4,1), (4,2), (4,3), (4,4), (4,5), (4,6) \\ (5,1), (5,2), (5,3), (5,4), (5,5), (5,6) \\ (6,1), (6,2), (6,3), (6,4), (6,5), (6,6) \\ \end{cases}$$

Total: $|\Omega| = 36$ equally likely outcomes (P = 1/36 each).

Two Dice: Grouping by Sum

Event grouping: outcomes with the same total.

Sum 2: (1,1)	1 outcome
Sum $3: (1,2), (2,1)$	2 outcomes
Sum $4: (1,3), (2,2), (3,1)$	3 outcomes
Sum $5: (1,4), (2,3), (3,2), (4,1)$	$4\ { m outcomes}$
Sum $6: (1,5), (2,4), (3,3), (4,2), (5,1)$	$5~{ m outcomes}$
Sum 7: $(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)$	6 outcomes
Sum 8: $(2,6), (3,5), (4,4), (5,3), (6,2)$	$5~{ m outcomes}$
Sum 9: $(3,6), (4,5), (5,4), (6,3)$	$4 \ {\sf outcomes}$
Sum $10: (4,6), (5,5), (6,4)$	3 outcomes
Sum $11: (5,6), (6,5)$	2 outcomes
Sum $12: (6,6)$	1 outcome

Joint, Marginal, and Conditional

- ▶ **Joint:** P(A, B) probability that A and B both occur.
- ▶ Marginal: $P(A) = \sum_b P(A, b)$ (discrete) or $\int P(A, b) db$.
- ▶ Conditional: $P(A|B) = \frac{P(A,B)}{P(B)}$ (if P(B) > 0).

	Heavy	Light	Total
Sunny	0.20	0.30	0.50
Rainy	0.15	0.20	0.35
Snowy	0.05	0.10	0.15
Total	0.40	0.60	1.00

Joint Probability: Two Dice

X= Die 1, Y= Die 2 Sample space Ω of 36 equally likely outcomes

$$p_{X,Y}(x,y) = \Pr(X = x, Y = y) = \frac{1}{36} \text{ for all } x, y \in \{1, \dots, 6\}$$

$$y = 1 \quad y = 2 \quad y = 3 \quad y = 4 \quad y = 5 \quad y = 6$$

$$x = 1 \quad \frac{1}{36} \quad \frac{1}{36} \quad \frac{1}{36} \quad \frac{1}{36} \quad \frac{1}{36} \quad \frac{1}{36}$$

$$x = 2 \quad \frac{1}{36} \quad \frac{1}{36} \quad \frac{1}{36} \quad \frac{1}{36} \quad \frac{1}{36} \quad \frac{1}{36}$$

$$x = 3 \quad \frac{1}{36} \quad \frac{1}{36} \quad \frac{1}{36} \quad \frac{1}{36} \quad \frac{1}{36} \quad \frac{1}{36}$$

$$x = 4 \quad \frac{1}{36} \quad \frac{1}{36} \quad \frac{1}{36} \quad \frac{1}{36} \quad \frac{1}{36} \quad \frac{1}{36}$$

$$x = 5 \quad \frac{1}{36} \quad \frac{1}{36} \quad \frac{1}{36} \quad \frac{1}{36} \quad \frac{1}{36} \quad \frac{1}{36}$$

$$x = 6 \quad \frac{1}{36} \quad \frac{1}{36} \quad \frac{1}{36} \quad \frac{1}{36} \quad \frac{1}{36} \quad \frac{1}{36}$$

The joint distribution assigns a probability to each ordered pair (x, y). For fair, independent dice, all 36 outcomes have probability 1/36.

Marginal Probability from the Joint

$$p_X(x) = \sum_y p_{X,Y}(x,y)$$
 and $p_Y(y) = \sum_x p_{X,Y}(x,y)$

	y=1	y=2	y=3	y=4	y=5	y=6	$p_X(x)$
x=1	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{6}{36} = \frac{1}{6}$
x=2	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{6}$
x=3	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{6}$
x=4	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{6}$
x=5	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{6}$
x=6	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{6}$
$p_Y(y)$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	1

Marginals are row/column sums of the joint. With fair, independent dice, $p_X(x) = p_Y(y) = \frac{1}{6}$ uniformly.

Conditional Probability: Given the Sum is 7

$$\Pr(X = x \mid S{=}7) = \frac{\Pr(X = x, \, S{=}7)}{\Pr(S{=}7)} \text{ where } S = X + Y$$

	y=1	y=2	y=3	y=4	y=5	y=6
x=1	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$
x=2	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$
x=3	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$
x=4	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$
x=5	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$
x=6	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$

Event S=7 (highlighted): (1,6),(2,5),(3,4),(4,3),(5,2),(6,1) — 6 outcomes.

$$\Pr(S=7) = \frac{6}{36} = \frac{1}{6}.$$

For any $x \in \{1, \dots, 6\}$, the compatible y is 7-x, so:

$$\Pr(X=x \mid S=7) = \frac{\frac{1}{36}}{\frac{1}{6}} = \frac{1}{6}.$$

Thus $X \mid (S=7)$ is uniform on $\{1, \ldots, 6\}$.

Bayes' Rule — Intuition

Bayes' Rule — Definition

$$P(H \mid E) = \frac{P(E \mid H) P(H)}{P(E)} \quad \text{with} \quad P(E) = \sum_{h} P(E \mid h) P(h)$$

- **Posterior** P(H|E): belief after seeing evidence E.
- **Prior** P(H): belief before seeing E.
- ▶ **Likelihood** P(E|H): how compatible E is with H.
- **Evidence** P(E): normalizer across all hypotheses.

Random variables

- ▶ $H \in \{ \text{disease}, \neg \text{disease} \}$
- $ightharpoonup E \in \{ ext{positive}, ext{ negative} \}$

Prior on H

$$P(H=$$
disease $)=p, \qquad P(H=\neg$ disease $)=1-p$

Likelihoods (test characteristics)

Prior: P(H) CPT: $P(E \mid H)$

Random variables

- ▶ $H \in \{\text{disease}, \neg \text{disease}\}$
- $ightharpoonup E \in \{ ext{positive}, ext{ negative} \}$

Prior on H

$$P(H=$$
disease $)=p, \qquad P(H=\neg$ disease $)=1-p$

Prior: P(H) CPT: $P(E \mid H)$

Given p, s, t, compute $P(H \mid E)$ by Bayes' rule.

Likelihoods (test characteristics)

	E=positive	E =negative
H=disease	s	1-s
$H = \neg disease$	1-t	t

Random variables

- ▶ $H \in \{ \text{disease}, \neg \text{disease} \}$
- $ightharpoonup E \in \{ ext{positive}, ext{ negative} \}$

Prior on H

$$P(H=$$
disease $)=p, \qquad P(H=\neg$ disease $)=1-p$

Likelihoods (test characteristics)

$$\begin{array}{c|cccc} & E = \text{positive} & E = \text{negative} \\ \hline H = \text{disease} & s & 1-s \\ H = \neg \text{disease} & 1-t & t \\ \end{array}$$

Prior: P(H) CPT: $P(E \mid H)$

$$P(E = positive \mid H = disease) =$$

Random variables

- ▶ $H \in \{ \text{disease}, \neg \text{disease} \}$
- $ightharpoonup E \in \{ ext{positive}, ext{ negative} \}$

Prior on H

$$P(H=$$
disease $)=p, \qquad P(H=\neg$ disease $)=1-p$

Likelihoods (test characteristics)

Prior: P(H) CPT: $P(E \mid H)$

$$P(E = \mathsf{positive} \mid H = \mathsf{disease}) =$$

$$P(H = \mathsf{disease}) =$$

Random variables

- ▶ $H \in \{ \text{disease}, \neg \text{disease} \}$
- $ightharpoonup E \in \{ ext{positive}, ext{ negative} \}$

Prior on H

$$P(H = disease) = p,$$
 $P(H = \neg disease) = 1 - p$

Likelihoods (test characteristics)

$$\begin{array}{c|cccc} & E = \text{positive} & E = \text{negative} \\ \hline H = \text{disease} & s & 1 - s \\ H = \neg \text{disease} & 1 - t & t \\ \end{array}$$

Prior: P(H) CPT: $P(E \mid H)$

$$P(E = \mathsf{positive} \mid H = \mathsf{disease}) =$$

$$P(H = \mathsf{disease}) =$$

$$P(E = positive) =$$

Random variables

- ▶ $H \in \{\text{disease}, \neg \text{disease}\}$
- $ightharpoonup E \in \{ ext{positive}, ext{ negative} \}$

Prior on H

$$P(H=$$
disease $)=p, \qquad P(H=\neg$ disease $)=1-p$

Likelihoods (test characteristics)

Prior: P(H) CPT: $P(E \mid H)$

$$P(E = \mathsf{positive} \mid H = \mathsf{disease}) =$$

$$P(H = \mathsf{disease}) =$$

$$P(E = positive) =$$

$$P(H = \text{disease} \mid E = \text{positive}) =$$

Bayes in Action: Spam Filtering

CPTs: $P(W_i \mid H)$

Prior on H

$$P(H=\text{spam}) = \gamma, P(H=\text{ham}) = 1 - \gamma$$

Random variables

- ▶ $H \in \{\text{spam}, \text{ham}\}$
- $ightharpoonup W_1 \in \{ ext{present, absent} \}$ (e.g., free)
- ▶ $W_2 \in \{\text{present}, \text{absent}\}\ (\text{e.g.}, \text{winner})$

Naive Bayes CPTs (feature conditionals)

	present	absent
$W_1 \mid H = spam$	α_1	$1-\alpha_1$
$W_1 \mid H =$ ham	eta_1	$1-\beta_1$

	present	absent
$W_2 \mid H = spam$	α_2	$1-\alpha_2$
$W_2 \mid H = ham$	eta_2	$1-\beta_2$

Bayes in Action: Spam Filtering

Trickier Computation

$$P(H=\operatorname{spam} \mid w_1, w_2) =$$