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Motivation

Motivation — Why Uncertainty?

▶ AI systems operate in noisy, unpredictable environments.
▶ Sensors fail, information is incomplete; actions have uncertain results; environments

are dynamic.
▶ We need a principled framework to model and reason under uncertainty.

Environment
dynamic

Agent

Percepts
noisy sensors; missing information

Actions
stochastic actuators
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Motivation

Limitations of Deterministic Logic

▶ Logic uses crisp truth values (True/False) — no notion of likelihood.
▶ Ambiguity and multiple causes break brittle rules.
▶ Example: “fever ⇒ flu” ignores colds, COVID, etc.

Truth Table: (fever) ⇒ (flu)

fever flu fever ⇒ flu

T T T
T F F
F T T
F F T

Example Conditional Probabilities
(Disease given fever is True/False)

P(Flu | ·) P(Cold | ·) P(COVID | ·)

Fever = True 0.40 0.20 0.25
Fever = False 0.03 0.15 0.02
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Motivation

Real-World Uncertainty

▶ Self-driving cars: imperfect sensors, unpredictable agents.
▶ Medical diagnosis: overlapping symptoms, imperfect tests.
▶ Spam filtering: unusual but benign messages.
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Probability Basics

Foundations of Probability

▶ Random variable: A variable whose values come from a sample
space of possible outcomes.

▶ Sample space (Ω): The complete set of all possible outcomes.

▶ Probability distribution P : Assigns a likelihood to each outcome in
Ω.

▶ Axioms of probability:
▶ Non-negativity: P(A) ≥ 0

▶ Normalization: P(Ω) = 1

▶ Additivity (disjoint): If A ∩B = ∅, then P(A ∪B) = P(A) + P(B)

▶ Events: Subsets of the sample space (e.g., “die shows an even
number”).

▶ Bounds: 0 ≤ P(A) ≤ 1.

Uniform distribution over
outcomes 1–6
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Probability Basics

Two Random Variables: Rolling Two Dice

▶ Setup: Roll two fair six-sided dice. Define random variables X (die 1) and Y (die 2).

▶ Sample space: Ω = {1, . . . , 6} × {1, . . . , 6}
All ordered pairs (i , j ), total of 36 outcomes.

▶ Joint distribution (uniform):
P(X = i ,Y = j ) = 1

36 for all i , j ∈ {1, . . . , 6}.

▶ Event example (sum = 7):
A = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}
P(A) = 6

36 = 1
6 .
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Probability Basics

Two Dice: Full Sample Space

Sample space: Ω = {(i , j ) : i , j ∈ {1, . . . , 6}}

(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6)

(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6)

(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6)

(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6)

(5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6)

(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)

Total: |Ω| = 36 equally likely outcomes (P = 1/36 each).
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Probability Basics

Two Dice: Grouping by Sum

Event grouping: outcomes with the same total.

Sum 2 : (1, 1) 1 outcome
Sum 3 : (1, 2), (2, 1) 2 outcomes
Sum 4 : (1, 3), (2, 2), (3, 1) 3 outcomes
Sum 5 : (1, 4), (2, 3), (3, 2), (4, 1) 4 outcomes
Sum 6 : (1, 5), (2, 4), (3, 3), (4, 2), (5, 1) 5 outcomes
Sum 7 : (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1) 6 outcomes
Sum 8 : (2, 6), (3, 5), (4, 4), (5, 3), (6, 2) 5 outcomes
Sum 9 : (3, 6), (4, 5), (5, 4), (6, 3) 4 outcomes

Sum 10 : (4, 6), (5, 5), (6, 4) 3 outcomes
Sum 11 : (5, 6), (6, 5) 2 outcomes
Sum 12 : (6, 6) 1 outcome
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Probability Basics

Joint, Marginal, and Conditional

▶ Joint: P(A,B) — probability that A and B both occur.
▶ Marginal: P(A) =

∑
b P(A, b) (discrete) or

∫
P(A, b) db.

▶ Conditional: P(A|B) =
P(A,B)

P(B)
(if P(B) > 0).

Heavy Light Total

Sunny

Rainy

Snowy

Total

0.20 0.30 0.50

0.15 0.20 0.35

0.05 0.10 0.15

0.40 0.60 1.00

Joint P(Rainy,Heavy)
Marginals P(Weather), P(Traffic)
Conditional P(Traffic | Sunny)
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Probability Basics

Joint Probability: Two Dice
X = Die 1, Y = Die 2 Sample space Ω of 36 equally likely outcomes

pX ,Y (x , y) = Pr(X = x , Y = y) = 1
36 for all x , y ∈ {1, . . . , 6}

y=1 y=2 y=3 y=4 y=5 y=6
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The joint distribution assigns a probability to each ordered pair (x , y). For fair, independent dice, all 36
outcomes have probability 1/36.
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Probability Basics

Marginal Probability from the Joint
pX (x ) =

∑
y pX ,Y (x , y) and pY (y) =

∑
x pX ,Y (x , y)

y=1 y=2 y=3 y=4 y=5 y=6 pX (x )
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Marginals are row/column sums of the joint. With fair, independent dice, pX (x ) = pY (y) = 1
6

uniformly.
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Probability Basics

Conditional Probability: Given the Sum is 7
Pr(X = x | S=7) =

Pr(X = x , S=7)

Pr(S=7)
where S = X +Y
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Event S = 7 (highlighted):
(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1) — 6
outcomes.

Pr(S=7) =
6

36
=

1

6
.

For any x ∈ {1, . . . , 6}, the compatible y is
7−x , so:

Pr(X=x | S=7) =
1
36
1
6

=
1

6
.

Thus X | (S=7) is uniform on {1, . . . , 6}.
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Bayes’ Rule

Bayes’ Rule — Intuition

Initial belief about H New evidence E

How consistent
is E with H?

Belief about H given E

Legend: H = Hypothesis E = Evidence
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Bayes’ Rule

Bayes’ Rule — Definition

P(H | E ) =
P(E | H )P(H )

P(E )
with P(E ) =

∑
h

P(E | h)P(h)

▶ Posterior P(H |E ): belief after seeing evidence E .
▶ Prior P(H ): belief before seeing E .
▶ Likelihood P(E |H ): how compatible E is with H .
▶ Evidence P(E ): normalizer across all hypotheses.

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 14 / 17



Bayes’ Rule

Bayes in Action: Diagnostic Reasoning

Random variables

▶ H ∈ {disease, ¬disease}
▶ E ∈ {positive, negative}

Prior on H

P(H=disease) = p, P(H=¬disease) = 1− p

Likelihoods (test characteristics)

E=positive E=negative
H=disease s 1− s
H=¬disease 1− t t

H (Disease) E (Test)

Prior: P(H ) CPT: P(E | H )

Given p, s, t , compute P(H | E) by Bayes’ rule.

P(E = positive | H = disease) =

P(H = disease) =

P(E = positive) =

P(H = disease | E = positive) =
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Bayes’ Rule

Bayes in Action: Spam Filtering

H (Spam)

W1 (“free”) W2 (“winner”)

Prior: P(H )

CPTs: P(Wi | H )

Prior on H

P(H=spam) = γ,P(H=ham) = 1− γ

Random variables

▶ H ∈ {spam, ham}
▶ W1 ∈ {present, absent} (e.g., free)

▶ W2 ∈ {present, absent} (e.g., winner)

Naive Bayes CPTs (feature conditionals)

present absent
W1 | H=spam α1 1− α1

W1 | H=ham β1 1− β1

present absent
W2 | H=spam α2 1− α2

W2 | H=ham β2 1− β2
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Bayes’ Rule

Bayes in Action: Spam Filtering

Trickier Computation
P(H=spam | w1,w2) =
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