Intelligent Agents

Constraint Satisfaction Problems

Curtis Larsen

Utah Tech University—Computing

Fall 2025

Motivation: Why CSPs?

- Many real-world problems can be naturally expressed as variables with domains subject to constraints.
- Provides a declarative model: specify what must be satisfied, not how to search.
- CSP algorithms exploit structure for efficiency compared to uninformed search.
- General-purpose solvers apply across diverse tasks:
 - Scheduling (classes, exams, tasks)
 - Map coloring (regions with different colors)
 - N-Queens
 - Sudoku
- ► Foundation for reasoning about feasibility, optimization, and knowledge representation.

Example: Scheduling

- Variables: tasks (or course sections); Domains: feasible time slots / rooms.
- Constraints: no overlap per resource (room/instructor), prerequisites, availability.
- Objective (optional): minimize gaps, balance load, maximize preferences.

Example: Map Coloring (Australia)

- ➤ Variables: regions {WA, NT, SA, QLD, NSW, VIC, TAS}.
- Domain: {red, green, blue} (3-coloring variant).
- Constraints: adjacent regions must have different colors.

эр Coloring (Australia) — Regions as Variables

Example: N-Queens (N=4)

- ▶ Variables: one per column $x_1, ..., x_4$; Domain: row index $\{1, ..., 4\}$.
- Constraints: no two queens share a row, column, or diagonal.
- ▶ Note: min-conflicts often solves large *N* quickly (preview for local search).

Example: Sudoku

- ▶ Variables: 81 cells (r, c); Domain: $\{1, ..., 9\}$ (restricted by givens).
- ▶ Constraints: all-different in each row, column, and 3×3 subgrid.
- ▶ Variants: optimization (fewest conflicts), exact cover encodings, SAT reductions.

Curtis Larsen (Utah Tech University)

CSP: Formal Definition

Constraint Satisfaction Problem (CSP) is a triple (X, D, C):

- ▶ Variables $X = \{X_1, X_2, ..., X_n\}$.
- **Domains** $D = \{D_1, D_2, \dots, D_n\}$ where each D_i is the set of allowable values for X_i .
- ▶ Constraints $C = \{C_1, C_2, \dots, C_m\}$, each C_j specifies allowed combinations of values for a subset (its *scope*) of variables.

Assignments and consistency

- \triangleright A (partial) assignment θ maps some variables to values in their domains.
- \triangleright θ is *consistent* iff it does not violate any constraint whose scope is fully assigned.
- ▶ A *solution* is a *complete* assignment that satisfies all constraints.

Map Coloring (Australia) as a CSP

Variables

$$X = \{WA, NT, SA, Q, NSW, V, T\}.$$

Domains (3 colors)

$$D_i = \{ \text{Red}, \text{Green}, \text{Blue} \} \text{ for all } X_i \in X.$$

Adjacency constraints (neighboring regions must differ):

$$\begin{split} & \text{WA} \neq \text{NT}, \ \text{WA} \neq \text{SA}, \ \text{NT} \neq \text{SA}, \ \text{NT} \neq \text{Q}, \\ & \text{SA} \neq \text{Q}, \ \text{SA} \neq \text{NSW}, \ \text{SA} \neq \text{V}, \ \text{Q} \neq \text{NSW}, \\ & \text{NSW} \neq \text{V} \end{split}$$

(Tasmania **T** is isolated; no adjacency constraints.)

States, Partial Assignments, and the Goal Test

State representation

- ▶ A *state* is a (possibly partial) assignment θ over X.
- ightharpoonup Example: $\theta = \{WA = Red, NT = Green\}.$

Consistency (a.k.a. feasibility)

- ► A partial state is *consistent* if no constraint is violated by currently assigned variables.
- ightharpoonup Consistency depends only on the scopes that are fully assigned in θ .

Goal test

- ▶ Goal: a complete assignment ($|dom(\theta)| = |X|$) that satisfies all constraints in C.
- ► For Australia: all seven regions assigned colors, and every adjacent pair differs.

Partial Assignment Examples (Australia)

Example A — consistent (partial)

 $\theta_A = \{ \mathsf{WA} = \mathsf{Red}, \; \mathsf{NT} = \mathsf{Green}, \; \mathsf{SA} = \mathsf{Blue} \}$

Checks: $WA \neq NT$, $WA \neq SA$, $NT \neq SA \Rightarrow no \ violations \ so \ far.$

Partial Assignment Examples (Australia)

Example B — inconsistent (partial)

 $\theta_B = \{ \mathsf{SA} = \mathsf{Red}, \ \mathsf{NSW} = \mathsf{Red} \}$

Check: SA≠NSW is violated ⇒ *inconsistent*.

Partial Assignment Examples (Australia)

Example C — consistent but incomplete

 $\theta_C = \{Q = Blue, NSW = Green\}$

Checks: Q≠NSW ⇒ satisfied; variables remaining: WA, NT, SA, V, T.

Visualizing CSPs: Constraint Networks

- A CSP can be represented as a constraint network:
 - ► **Nodes**: Variables
 - **Edges**: Constraints between variables
- Makes the structure of the problem explicit.
- Useful for reasoning about:
 - Constraint tightness
 - Variable connectivity
 - Ordering heuristics

Visualizing CSPs: Constraint Networks

Constraint Network: Australia Map Coloring

Constraint Orderings: Map Coloring

- Variable ordering affects search efficiency.
- Example: Australia map coloring
 - ► Variables: {WA, NT, SA, Q, NSW, V, T}
 - ▶ Domain: {Red, Green, Blue}
 - Constraints: Adjacent regions ≠ color
- ► Two possible orderings:
 - 1. Start with Tasmania (low connectivity) → poor choice
 - 2. Start with South Australia (high connectivity) → better choice

Constraint Orderings: Map Coloring

Constraint Orderings: Australia Map Coloring

Ordering A (poor): low connectivity first

Ordering B (better): start at high-degree SA

Backtracking Search for CSPs

- Basic search method for CSPs.
- Builds assignments incrementally.
- At each step:
 - 1. Choose an unassigned variable.
 - 2. Assign it a value consistent with prior assignments.
 - If conflict: backtrack.
- Depth-first, systematic, but may be exponential.

CSP Backtracking (with MRV/Degree & LCV hooks)

```
Algorithm 1 Backtracking Search for CSPs
Require: variables X = \{X_1, \dots, X_n\}, domains D(X_i), constraints C
Ensure: a complete assignment A satisfying all C or FAILURE
 1: function BACKTRACKING-SEARCH(X, D, C)
        return BACKTRACK(\{\}, X, D, C\}
                                                                             3: end function
   function BACKTRACK(\mathcal{A}, X, D, C)
        if A assigns all variables in X then return A
       end if
       X_i \leftarrow \mathsf{Select}\text{-}\mathsf{Unassigned}\text{-}\mathsf{Variable}(\mathcal{A},X,C)
                                                                                         ▶ MRV then Degree
       for all v \in \mathsf{ORDER}\text{-}\mathsf{DOMAIN}\text{-}\mathsf{VALUES}(X_t, \mathcal{A}, D, C) do
                                                                                                        ⊳ I CV
           if CONSISTENT(X_i \leftarrow v, A, C) then
               A' \leftarrow A \cup \{X_i \mapsto v\}
10:
               result \leftarrow BACKTRACK(A', X, D, C)
11:
12:
               if result ≠ FAILURE then return result
               end if
13:
           end if
14.
        end for
15.
        return FAILURE
16.
17: end function
```

CSP Backtracking (with MRV/Degree & LCV hooks)

Algorithm 2 Backtracking Search for CSPs

- 1: function Select-Unassigned-Variable (A, X, C)
- 2: $U \leftarrow \{X_i \in X \mid X_i \text{ unassigned in } A\}$
- 3: **return** $X_i \in U$ with minimum |legal_values $(X_i \mid \mathcal{A}, C)$ | **(MRV)**, tie-break by maximum degree w.r.t. other vars in U
- 4: end function
- 5: function ORDER-DOMAIN-VALUES (X_i, A, D, C)
- 6: **return** values of $D(X_i)$ sorted by *least* number of values ruled out in neighbors **(LCV)**
- 7: end function
- 8: function Consistent($X_i \leftarrow v, A, C$)
- 9: **return** TRUE iff \forall constraint $c \in C$ over vars in $A \cup \{X_i\}$, the partial assignment satisfies c
- 10: end function

Heuristic: Minimum Remaining Values (MRV)

- Also called the most constrained variable.
- Choose the variable with the fewest legal values left.
- ▶ Intuition: Fail fast detect dead ends early.

MRV (Minimum Remaining Values)

Heuristic: Degree Heuristic

- Tie-breaker for MRV.
- Choose variable involved in the largest number of constraints on other unassigned variables.
- ▶ Intuition: Assign the most "constraining" variable first.

Heuristic: Least-Constraining Value

- When selecting a value for a variable, prefer the one that leaves the most options open for others.
- Intuition: Reduce branching factor by preserving flexibility.

Local Search for CSPs: Motivation

Min-Conflicts Heuristic (N-Queens Example)

Local Search: Properties & When to Use

Example Walkthrough: 4-Queens (Step 0)

Start — domains for all variables are $\{1,2,3,4\}$.

Example Walkthrough: 4-Queens (Step 1)

4-Queens — CSP Backtracking with Forward Checking

Assign $Q_1 = 2$; prune same row/diagonals via forward checking.

Example Walkthrough: 4-Queens (Step 2)

4-Queens — CSP Backtracking with Forward Checking

Forward-checking forces $Q_2 = 4$ (only value left).

Example Walkthrough: 4-Queens (Step 3)

4-Queens — CSP Backtracking with Forward Checking

Choose $Q_3 = 1$ consistent with constraints so far.

Example Walkthrough: 4-Queens (Step 4)

4-Queens — CSP Backtracking with Forward Checking

Only value remaining for Q_4 is 3 — solution (2, 4, 1, 3).

Summary: CSP Strategies & Advantages

- ► **Model once, solve many:** Variables, domains, constraints unify diverse problems (map coloring, n-queens, scheduling).
- ➤ Search with pruning: Backtracking + forward checking and constraint propagation (e.g., arc consistency) cut the search dramatically.
- ► Heuristics matter: MRV (min-remaining-values), degree, and least-constraining-value guide choices effectively.
- Local search options: Min-conflicts excels on large/loose CSPs; often finds solutions quickly from random starts.
- ► **Tradeoffs:** Completeness vs. speed; stronger propagation costs more per step but reduces backtracking.
- ► **Takeaway:** Well-chosen representations + propagation + heuristics ⇒ tractable solutions for large CSPs.