Adversarial Search

Curtis Larsen

Utah Tech University—Computing

September 4, 2025

Today's Sections

- Motivation & Applications
- Games as Environments
- Game Trees
- Minimax Algorithm
- 6 Alpha–Beta Pruning
- Practical Considerations

Motivation & Applications

Why adversarial search and where it shows up.

Why Adversarial Search?

- Single-agent search assumes a passive environment.
- In many domains, there is an **opponent** with conflicting goals.
- Need strategies that account for adversarial agents.

Competitive Environments

- Zero-sum: one player's gain is the other's loss.
- Deterministic and perfect information: no hidden cards, no randomness.
- Classic setting for studying rational play.

Applications of Adversarial Search

- Board games: chess, checkers, tic-tac-toe.
- Real-time games: strategy and video games.
- Economic or market competition models.
- Multi-agent simulations and robotics.

Connection to AI Agents

- Rational play as a model of intelligent decision-making.
- Foundation for modern game-playing agents (e.g., AlphaGo).
- Links to Monte Carlo methods and LLM-based multi-agent systems.

Games as Environments

Deterministic, perfect-information, zero-sum setups.

Games as Al Environments

- Games can be modeled with the agent–environment loop.
- ▶ Players alternate turns, producing sequential states.
- Actions are chosen strategically, anticipating opponent responses.

Defining Characteristics

- Fully observable (perfect information)
- Deterministic (no chance events in classic board games)
- Sequential (moves matter in order)
- Dynamic (opponent can change the state while you "wait")
- Discrete (finite states, actions, moves)
- Multi-agent (at least two players with competing goals)

Classic adversarial games: fully observable, deterministic, sequential, dynamic, discrete, multi-agent.

Formal Components of a Game

- **States:** s, board positions or configurations.
- **Actions:** A(s), legal moves available to a player.
- **Transition model:** $T(s, a) \rightarrow s'$, how actions lead to new states.
- ▶ Players: usually 2: MAX and MIN.
- ▶ **Initial state:** s₀, current conditions of the game.
- **Terminal states:** Terminal(s), end conditions of the game.
- **Utility function:** u(s), numerical payoff (win/loss/draw).

Illustrative Examples

- Deterministic, perfect information: Chess, Checkers, Tic-Tac-Toe.
- Hidden information: Poker, Bridge.
- Stochastic play: Rock-Paper-Scissors with mixed strategies.

Game Trees

States as nodes, actions as edges; MAX/MIN alternating layers.

Introduction to Game Trees

- States are represented as nodes, actions as edges.
- Players alternate turns: MAX tries to maximize, MIN tries to minimize.
- Game tree encodes all possible sequences of play.

Structure of Game Trees

- ► Root node: the **initial state** (current game conditions).
- Internal nodes: non-terminal states with available actions.
- Leaf nodes: terminal states, labeled with utility values.

MAX and MIN Nodes

- MAX nodes: the agent selects actions to maximize utility.
- MIN nodes: the opponent selects actions to minimize utility.
- ► Tree alternates layers of MAX and MIN.

Example Game Tree

- A small example (tic-tac-toe fragment).
- Internal nodes alternate MAX and MIN.
- Leaves annotated with utility values (e.g., win, lose, draw).

Minimax Algorithm

Compute optimal play via recursive value propagation.

Motivation for Minimax

- In adversarial games, MAX tries to maximize utility, MIN tries to minimize it.
- A game tree encodes all possible outcomes of play.
- ▶ The goal: compute the optimal strategy by reasoning about the opponent's moves.

Definition of Minimax Value

- Terminal nodes have utility values (win, lose, draw).
- ▶ MAX nodes take the maximum of their children's values.
- ▶ MIN nodes take the minimum of their children's values.
- Values propagate upward from leaves to the root.

Algorithmic Formulation

- Recursive algorithm:
 - If node is terminal: return its utility.
 - ▶ If node is MAX: return max of minimax values of children.
 - ▶ If node is MIN: return min of minimax values of children.
- Guarantees optimal play under perfect information.

Minimax Algorithm (Pseudocode)

Algorithm 1 Minimax(s)

- 1: **if** s is terminal **then**
- 2: **return** u(s)
- 3: else if player(s) = MAX then
- 4: **return** $\max_{a \in A(s)}$ Minimax(T(s, a))
- 5: **else**
- 6: **return** $\min_{a \in A(s)}$ Minimax(T(s, a))
- 7: end if

b utility value of terminal state

Minimax Algorithm

```
Algorithm 2 Minimax(s)
 1: return MAX-VALUE(s)
Algorithm 3 Max-Value(s)
 1: if TERMINAL(s) then
       return u(s)
 3: end if
 4: v \leftarrow -\infty
 5: for a \in A(s) do
       v \leftarrow \max(v, \mathsf{MIN-VALUE}(T(s, a)))
 7: end for
 8: return v
Algorithm 4 Min-Value(s)
 1: if TERMINAL(s) then
       return u(s)
 3: end if
 4: v ← +∞
```

 $v \leftarrow \min(v, \mathsf{MAX-VALUE}(T(s, a)))$

5: for $a \in A(s)$ do

7: end for

Worked Example

- Consider a small game tree (e.g., tic-tac-toe fragment).
- Annotate terminal states with utilities.
- Show values being propagated upward.
- Root's minimax value determines the best move for MAX.

Alpha-Beta Pruning

▶ Prune branches while preserving the minimax result.

Why Alpha-Beta Pruning?

- Minimax is complete and optimal, but explores the entire game tree.
- Number of nodes grows exponentially: $O(b^d)$ for branching factor b and depth d.
- Alpha—Beta pruning reduces the effective branching factor.

Key Idea of Alpha-Beta

- Maintain two bounds while searching:
 - $ightharpoonup \alpha$: best value MAX can guarantee so far.
 - \triangleright β : best value MIN can guarantee so far.
- If a node's value is outside these bounds, further exploration can be **pruned**.

Pruning in Action

- As we traverse the tree, some branches cannot influence the final decision.
- These branches are cut off ("pruned") without full evaluation.
- Example: once MAX has a choice better than what MIN allows elsewhere, skip the rest.
- Important: pruning never changes the final minimax value.

Alpha–Beta Pruning (Wrapper)

Algorithm 5 AlphaBeta(s)

1: **return** MAX-VALUE-AB($s, \alpha = -\infty, \beta = +\infty$)

Alpha-Beta: MAX-VALUE-AB

Algorithm 6 Max-Value-AB(s, α, β) 1: **if** TERMINAL(s) **then** return u(s)3: end if 4: $v \leftarrow -\infty$ 5: for $a \in A(s)$ do $v \leftarrow \max(v, \mathsf{MIN-VALUE-AB}(T(s, a), \alpha, \beta))$ $\alpha \leftarrow \max(\alpha, v)$ if $\alpha > \beta$ then break 9. prune: MIN has a better option elsewhere 10: end if 11: end for 12: return v

Alpha-Beta: MIN-VALUE-AB

```
Algorithm 7 Min-Value-AB(s, \alpha, \beta)
 1: if TERMINAL(s) then
        return u(s)
 3: end if
 4: v \leftarrow +\infty
 5: for a \in A(s) do
        v \leftarrow \min(v, \mathsf{MAX-VALUE-AB}(T(s, a), \alpha, \beta))
     \beta \leftarrow \min(\beta, v)
        if \alpha > \beta then
            break
 9.
                                                                  > prune: MAX has a better option elsewhere
10:
        end if
11: end for
12: return v
```

Properties of Alpha-Beta

- Returns the same optimal move as minimax.
- Reduces number of nodes expanded.
- ▶ With perfect move ordering: $O(b^{d/2})$ instead of $O(b^d)$.
- ▶ In practice: huge efficiency gain, especially in deeper trees.

Enter left MIN(a) with initial bounds: $\alpha = -\infty$, $\beta = +\infty$.

Practical Considerations

Depth limits, evaluation functions, and the horizon effect.

Depth Limits

- In real games, the search tree is too large to fully expand.
- A common approach: limit search to a fixed depth d.
- Tradeoff: shallower depth is faster but less accurate.

Evaluation Functions

- Used at cutoff nodes to approximate utility values.
- Must be quick to compute.
- Should correlate well with the true chance of winning.
- Example: material balance in chess.

Alpha-Beta with Cutoff

- Use Alpha–Beta pruning, but stop at depth limit d.
- ightharpoonup At cutoff nodes, apply an evaluation function instead of u(s).
- This is the standard approach in practice (e.g., chess programs).

Alpha–Beta with Cutoff (Wrapper)

Algorithm 8 AlphaBetaCutoff(s, d)

1: **return** MAX-VALUE-AB $(s, \alpha = -\infty, \beta = +\infty, d)$

Alpha—Beta with Cutoff: MAX-VALUE-AB

```
Algorithm 9 Max-Value-AB(s, \alpha, \beta, d)
```

```
1: if s is terminal then
        return u(s)

    b true utility at terminal

 3: else if d=0 then
        return \mathrm{Eval}(s)
                                                                                      approximate value at cutoff
 5: end if
 6: v \leftarrow -\infty
 7: for a \in A(s) do
        v \leftarrow \max(v, \text{MIN-VALUE-AB}(T(s, a), \alpha, \beta, d-1))
 8:
        \alpha \leftarrow \max(\alpha, v)
10: if \alpha > \beta then
            break
11:
                                                                                                 beta cutoff (prune)
12:
        end if
13: end for
```

14: return v

Alpha—Beta with Cutoff: MIN-VALUE-AB

```
Algorithm 10 Min-Value-AB(s, \alpha, \beta, d)
```

```
1: if s is terminal then
        return u(s)

    b true utility at terminal

 3. else if d=0 then
        return \mathrm{Eval}(s)
                                                                                      approximate value at cutoff
 5: end if
 6: v \leftarrow +\infty
 7: for a \in A(s) do
        v \leftarrow \min(v, \mathsf{MAX-VALUE-AB}(T(s, a), \alpha, \beta, d-1))
 8:
    \beta \leftarrow \min(\beta, v)
10: if \alpha > \beta then
      break
11:

    □ alpha cutoff (prune)

12:
        end if
13: end for
```

14: return v

Horizon Effect

- Artificial cutoff can miss important consequences beyond d.
- Example: a forced loss that occurs just past the horizon.
- Agents may overvalue moves that only delay bad outcomes.

Tradeoffs

- ▶ Deeper search ⇒ more accurate but slower.
- Shallower search ⇒ faster but less accurate.
- Move ordering heuristics improve efficiency of Alpha–Beta pruning.

Modern Connections

- Classical evaluation functions vs. learned neural networks (e.g., AlphaZero).
- Monte Carlo methods (e.g., Monte Carlo Tree Search in Go).
- Balance of search and approximation is still central today.