Adversarial Search J

Curtis Larsen

Utah Tech University—Computing

September 4, 2025

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 1/59

Today’s Sections

0 Motivation & Applications
e Games as Environments
e Game Trees

e Minimax Algorithm

e Alpha—Beta Pruning

@ Practical Considerations

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 2/59

Motivation & Applications

Motivation & Applications

» Why adversarial search and where it shows up.

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 3/59

Why Adversarial Search?

> Single-agent search assumes a passive environment.

» In many domains, there is an opponent with conflicting goals.
» Need strategies that account for adversarial agents.

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025

4/59

Motivation & Applications

Competitive Environments
> Zero-sum: one player’s gain is the other’s loss.

» Deterministic and perfect information: no hidden cards, no randomness.
» Classic setting for studying rational play.

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025

5/59

Motivation & Applications

Applications of Adversarial Search

» Board games: chess, checkers, tic-tac-toe.
> Real-time games: strategy and video games.
» Economic or market competition models.

» Multi-agent simulations and robotics.

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 6/59

Motivation & Applications

Connection to Al Agents
» Rational play as a model of intelligent decision-making.

» Foundation for modern game-playing agents (e.g., AlphaGo).
» Links to Monte Carlo methods and LLM-based multi-agent systems.

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025

7/59

Games as Environments

Games as Environments

» Deterministic, perfect-information, zero-sum setups.

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 8/59

Games as Environments

Games as Al Environments
» Games can be modeled with the agent—environment loop.

> Players alternate turns, producing sequential states.
> Actions are chosen strategically, anticipating opponent responses.

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025

9/59

Games as Environments

Defining Characteristics

Fully observable (perfect information)
Deterministic (no chance events in classic board games)

Dynamic (opponent can change the state while you “wait”)
Discrete (finite states, actions, moves)

>
>

> Sequential (moves matter in order)

>

>

» Multi-agent (at least two players with competing goals)

Classic adversarial games: fully observable, deterministic, sequential, dynamic,
discrete, multi-agent.

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 10/59

Games as Environments

Formal Components of a Game

> States: s, board positions or configurations.

> Actions: A(s), legal moves available to a player.

» Transition model: T'(s,a) — s, how actions lead to new states.
» Players: usually 2: MAX and MIN.

> Initial state: sy, current conditions of the game.

» Terminal states: Terminal(s), end conditions of the game.

» Utility function: «(s), numerical payoff (win/loss/draw).

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 11/59

Games as Environments

lllustrative Examples
> Deterministic, perfect information: Chess, Checkers, Tic-Tac-Toe.

» Hidden information: Poker, Bridge.
> Stochastic play: Rock—Paper—Scissors with mixed strategies.

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 12/59

Game Trees

Game Trees

> States as nodes, actions as edges; MAX/MIN alternating layers.

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 13/59

Game Trees

Introduction to Game Trees
» States are represented as nodes, actions as edges.

> Players alternate turns: MAX tries to maximize, MIN tries to minimize.
» Game tree encodes all possible sequences of play.

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025

14/59

Game Trees

Structure of Game Trees
» Root node: the initial state (current game conditions).

» Internal nodes: non-terminal states with available actions.
> Leaf nodes: terminal states, labeled with utility values.

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025

15/59

MAX and MIN Nodes

» MAX nodes: the agent selects actions to maximize utility.
» MIN nodes: the opponent selects actions to minimize utility.
> Tree alternates layers of MAX and MIN.

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 16/59

Game Trees

Example Game Tree
> A small example (tic-tac-toe fragment).

» Internal nodes alternate MAX and MIN.
> Leaves annotated with utility values (e.g., win, lose, draw).

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025

17/59

Minimax Algorithm

Minimax Algorithm

» Compute optimal play via recursive value propagation.

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 18/59

Minimax Algorithm

Motivation for Minimax
» In adversarial games, MAX tries to maximize utility, MIN tries to minimize it.

> A game tree encodes all possible outcomes of play.
» The goal: compute the optimal strategy by reasoning about the opponent’s moves.

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 19/59

Definition of Minimax Value

» Terminal nodes have utility values (win, lose, draw).

> MAX nodes take the maximum of their children’s values.
» MIN nodes take the minimum of their children’s values.
» Values propagate upward from leaves to the root.

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 20/59

Minimax Algorithm

Algorithmic Formulation

» Recursive algorithm:
> If node is terminal: return its utility.

» [f node is MAX: return max of minimax values of children.

» |f node is MIN: return min of minimax values of children.
» Guarantees optimal play under perfect information.

Curtis Larsen (Utah Tech University) Adversarial Search

September 4, 2025

21/59

Minimax Algorithm (Pseudocode)

Algorithm 1 Minimax(s)
if s is terminal then
return u(s) > utility value of terminal state
. else if player(s) = MAX then
return max, ¢ 4,y Minimax(7'(s, a))
. else
return min,c 4,y Minimax(7(s, a))
. end if

No akowbh2

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 22/59

Minimax Algorithm

Minimax Algorithm

Algorithm 2 Minimax(s)

1

return MAX-VALUE(s)

Algorithm 3 Max-Value(s)

: if TERMINAL(s) then

return u(s)

1
2
3: end if

4 v 4 —00
5:
[
7
8.

for a € A(s) do
v < max(v, MIN-VALUE(T (s, a)))

: end for
: return v

Algorithm 4 Min-Value(s)

. if TERMINAL(s) then

return u(s)

1
2
3: end if

4: v < +00
5:
6:
7
8

for a € A(s) do
v < min(v, MAX-VALUE(T (s, a)))

: end for
: return v

Curtis Larsen (Utah Tech University)

Adversarial Search

September 4, 2025

23/59

Worked Example

» Consider a small game tree (e.g., tic—tac—toe fragment).
» Annotate terminal states with utilities.

» Show values being propagated upward.

» Root’s minimax value determines the best move for MAX.

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 24/59

Minimax: Step 0

Minimax: Step-by-Step

Evaluate leftmost leaf

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 25/59

Minimax: Step 1

Minimax: Step-by-Step

Propagate up: MIN(a)=3

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 26/59

Minimax: Step 2

Minimax: Step-by-Step

u=3 u=5
Evaluate sibling leaf

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 27/59

Minimax: Step 3

Minimax: Step-by-Step

u=3 u=5
Root updates: MAX(r)=3 (so far)

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 28/59

Minimax: Step 4

Minimax: Step-by-Step

u=3 u=5 u=2
Evaluate right subtree first leaf

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 29/59

Minimax: Step 5

Minimax: Step-by-Step

u=3 u=5 u=2
Propagate: MIN(b)=2

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025

30/59

Minimax: Step 6

Minimax: Step-by-Step

u=3 u=5 u=2 u=9
Evaluate last leaf

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 31/59

Minimax: Step 7

Minimax: Step-by-Step

u=5 u=2
Final: MAX(r)=max(3,2)=3

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 32/59

Alpha—Beta Pruning

» Prune branches while preserving the minimax result.

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 33/59

Why Alpha—Beta Pruning?

» Minimax is complete and optimal, but explores the entire game tree.

» Number of nodes grows exponentially: O(b?) for branching factor b and depth d.
» Alpha—Beta pruning reduces the effective branching factor.

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 34/59

Key Idea of Alpha—Beta

» Maintain two bounds while searching:

» «: best value MAX can guarantee so far.
> 3: best value MIN can guarantee so far.

> If a node’s value is outside these bounds, further exploration can be pruned.

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 35/59

Alpha—-Beta Pruning

Pruning in Action

> As we traverse the tree, some branches cannot influence the final decision.
» These branches are cut off (“pruned”) without full evaluation.

» Example: once MAX has a choice better than what MIN allows elsewhere, skip the
rest.

» Important: pruning never changes the final minimax value.

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 36/59

Alpha—Beta Pruning (Wrapper)

Algorithm 5 AlphaBeta(s)

1: return MAX-VALUE-AB(s, a = —0c0, 8 = 4+00)

Curtis Larsen (Utah Tech University) Adversarial Search

September 4, 2025

37/59

Alpha—Beta: MAX-VALUE-AB

Algorithm 6 Max-Value-AB(s, a,)
. if TERMINAL(s) then
return u(s)
: end if

1
2

3

4: v < —00

5: for a € A(s) do
6 ¥ 4= max (v, MIN-VALUE-AB(T'(s, a), «, [3))

7 a + max(a, v)

8 if « > g then

9: break > prune: MIN has a better option elsewhere
10: end if

11: end for

12: return v

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 38/59

Alpha—Beta: MIN-VALUE-AB

Algorithm 7 Min-Value-AB(s, «,)
1: if TERMINAL(s) then
2 return u(s)
3: end if
4: v < +00

5: for a € A(s) do

6

7

8

v < min (v, MAX-VALUE-AB(T (s, a), a, ,B))
B+ min(8, v)
if « > 3 then
9: break > prune: MAX has a better option elsewhere
10: end if
11: end for
12: return v

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 39/59

Properties of Alpha—Beta

» Returns the same optimal move as minimax.

» Reduces number of nodes expanded.

» With perfect move ordering: O(b%/?) instead of O(b%).

> In practice: huge efficiency gain, especially in deeper trees.

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 40/59

Alpha—Beta: Step 0

= - B=o
AIpha—Betg Pruning: Step-by-Step

Enter left MIN(a) with initial bounds: a = — ®©, B = + .

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 41/59

Alpha—Beta: Step 1

= - B=o
AIpha—Betg Pruning: Step-by-Step

Evaluate left child u(al) = 3.

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 42/59

Alpha—Beta: Step 2

= - B=o
AIpha—Betg Pruning: Step-by-Step

At MIN(a): after u(al) = 3, set 8 = 3. Current v(a) =3.

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 43/59

Alpha—Beta: Step 3

= - B=o
AIpha—Betg Pruning: Step-by-Step

u=3 u=>5
Evaluate right child u(a2) = 5.

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 44/59

Alpha—Beta: Step 4

= - B=o
AIpha—Betg Pruning: Step-by-Step

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 45/59

Alpha—Beta: Step 5

=3 B=w
AIpha—BetaaPruning: Step-by-Step

u=3 u=5
Root MAX: update a = max(—~, 3) = 3.

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 46/59

Alpha—Beta: Step 6

=3 B=w
AIpha—BetaaPruning: Step-by-Step

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 47/59

Alpha—Beta: Step 7

=3 B=w
AIpha—BetaaPruning: Step-by-Step

u=3 u=5 u=2
At MIN(b): B =2. Since a(=3) = B(= 2), \textbf{prune} the remaining child.

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 48/59

Alpha—Beta: Step 8

=3 B=w
AIpha—BetaaPruning: Step-by-Step

u=3 u=5 u=2
Back at root: v(r) = max(3, 2) = 3. Pruned subtree never affects the outcome,

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 49/59

Practical Considerations

Practical Considerations

» Depth limits, evaluation functions, and the horizon effect.

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 50/59

Depth Limits

» In real games, the search tree is too large to fully expand.

» A common approach: limit search to a fixed depth d.
» Tradeoff: shallower depth is faster but less accurate.

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025

51/59

Practical Considerations

Evaluation Functions

» Used at cutoff nodes to approximate utility values.

» Must be quick to compute.

» Should correlate well with the true chance of winning.
» Example: material balance in chess.

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 52/59

Alpha—Beta with Cutoff

» Use Alpha—Beta pruning, but stop at depth limit d.
> At cutoff nodes, apply an evaluation function instead of u(s).
» This is the standard approach in practice (e.g., chess programs).

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025

53/59

Alpha—Beta with Cutoff (Wrapper)

Algorithm 8 AlphaBetaCutoff(s, d)

1: return MAX-VALUE-AB(s, a = —oc0, = 400, d)

Curtis Larsen (Utah Tech University) Adversarial Search

September 4, 2025

54/59

Alpha—Beta with Cutoff: MAX-VALUE-AB

Algorithm 9 Max-Value-AB(s, a, 8, d)
if s is terminal then
return u(s) > true utility at terminal
: else if d = 0 then
return Eval(s) > approximate value at cutoff
end if
U < —00
: for a € A(s) do
v max(v, MIN-VALUE-AB(T(s,a), «, B, d — 1))
a < max(a, v)
10: if « > § then
11: break > beta cutoff (prune)
12: end if
13: end for
14: return v
Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 55/59

N gk w2

©

Alpha—Beta with Cutoff: MIN-VALUE-AB

Algorithm 10 Min-Value-AB(s, «, 3, d)
if s is terminal then
return u(s) > true utility at terminal
. else if d = 0 then
return Eval(s) > approximate value at cutoff
end if
vV 4— +00
: for a € A(s) do
v min(v, MAX-VALUE-AB(T'(s,a), a, B, d — 1))
B + min(s, v)
10: if « > 5 then
11: break > alpha cutoff (prune)
12: end if
13: end for
14: return v
Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 56/59

N gk w2

©

Practical Considerations

Horizon Effect
> Artificial cutoff can miss important consequences beyond d.

> Example: a forced loss that occurs just past the horizon.
» Agents may overvalue moves that only delay bad outcomes.

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025

57/59

Practical Considerations

Tradeoffs
» Deeper search = more accurate but slower.

» Shallower search = faster but less accurate.
» Move ordering heuristics improve efficiency of Alpha—Beta pruning.

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025

58/59

Practical Considerations

Modern Connections
» Classical evaluation functions vs. learned neural networks (e.g., AlphaZero).

» Monte Carlo methods (e.g., Monte Carlo Tree Search in Go).
» Balance of search and approximation is still central today.

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 59/59

	Motivation & Applications
	Games as Environments
	Game Trees
	Minimax Algorithm
	Alpha–Beta Pruning
	Practical Considerations

