
Adversarial Search

Curtis Larsen

Utah Tech University—Computing

September 4, 2025

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 1 / 59



Today’s Sections

1 Motivation & Applications

2 Games as Environments

3 Game Trees

4 Minimax Algorithm

5 Alpha–Beta Pruning

6 Practical Considerations

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 2 / 59



Motivation & Applications

Motivation & Applications

▶ Why adversarial search and where it shows up.

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 3 / 59



Motivation & Applications

Why Adversarial Search?

▶ Single-agent search assumes a passive environment.
▶ In many domains, there is an opponent with conflicting goals.
▶ Need strategies that account for adversarial agents.

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 4 / 59



Motivation & Applications

Competitive Environments

▶ Zero-sum: one player’s gain is the other’s loss.
▶ Deterministic and perfect information: no hidden cards, no randomness.
▶ Classic setting for studying rational play.

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 5 / 59



Motivation & Applications

Applications of Adversarial Search

▶ Board games: chess, checkers, tic-tac-toe.
▶ Real-time games: strategy and video games.
▶ Economic or market competition models.
▶ Multi-agent simulations and robotics.

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 6 / 59



Motivation & Applications

Connection to AI Agents

▶ Rational play as a model of intelligent decision-making.
▶ Foundation for modern game-playing agents (e.g., AlphaGo).
▶ Links to Monte Carlo methods and LLM-based multi-agent systems.

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 7 / 59



Games as Environments

Games as Environments

▶ Deterministic, perfect-information, zero-sum setups.

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 8 / 59



Games as Environments

Games as AI Environments

▶ Games can be modeled with the agent–environment loop.
▶ Players alternate turns, producing sequential states.
▶ Actions are chosen strategically, anticipating opponent responses.

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 9 / 59



Games as Environments

Defining Characteristics

▶ Fully observable (perfect information)
▶ Deterministic (no chance events in classic board games)
▶ Sequential (moves matter in order)
▶ Dynamic (opponent can change the state while you “wait”)
▶ Discrete (finite states, actions, moves)
▶ Multi-agent (at least two players with competing goals)

Classic adversarial games: fully observable, deterministic, sequential, dynamic,
discrete, multi-agent.

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 10 / 59



Games as Environments

Formal Components of a Game

▶ States: s, board positions or configurations.
▶ Actions: A(s), legal moves available to a player.
▶ Transition model: T (s, a)→ s ′, how actions lead to new states.
▶ Players: usually 2: MAX and MIN.
▶ Initial state: s0, current conditions of the game.
▶ Terminal states: Terminal(s), end conditions of the game.
▶ Utility function: u(s), numerical payoff (win/loss/draw).

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 11 / 59



Games as Environments

Illustrative Examples

▶ Deterministic, perfect information: Chess, Checkers, Tic-Tac-Toe.
▶ Hidden information: Poker, Bridge.
▶ Stochastic play: Rock–Paper–Scissors with mixed strategies.

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 12 / 59



Game Trees

Game Trees

▶ States as nodes, actions as edges; MAX/MIN alternating layers.

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 13 / 59



Game Trees

Introduction to Game Trees

▶ States are represented as nodes, actions as edges.
▶ Players alternate turns: MAX tries to maximize, MIN tries to minimize.
▶ Game tree encodes all possible sequences of play.

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 14 / 59



Game Trees

Structure of Game Trees

▶ Root node: the initial state (current game conditions).
▶ Internal nodes: non-terminal states with available actions.
▶ Leaf nodes: terminal states, labeled with utility values.

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 15 / 59



Game Trees

MAX and MIN Nodes

▶ MAX nodes: the agent selects actions to maximize utility.
▶ MIN nodes: the opponent selects actions to minimize utility.
▶ Tree alternates layers of MAX and MIN.

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 16 / 59



Game Trees

Example Game Tree

▶ A small example (tic-tac-toe fragment).
▶ Internal nodes alternate MAX and MIN.
▶ Leaves annotated with utility values (e.g., win, lose, draw).

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 17 / 59



Minimax Algorithm

Minimax Algorithm

▶ Compute optimal play via recursive value propagation.

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 18 / 59



Minimax Algorithm

Motivation for Minimax

▶ In adversarial games, MAX tries to maximize utility, MIN tries to minimize it.
▶ A game tree encodes all possible outcomes of play.
▶ The goal: compute the optimal strategy by reasoning about the opponent’s moves.

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 19 / 59



Minimax Algorithm

Definition of Minimax Value

▶ Terminal nodes have utility values (win, lose, draw).
▶ MAX nodes take the maximum of their children’s values.
▶ MIN nodes take the minimum of their children’s values.
▶ Values propagate upward from leaves to the root.

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 20 / 59



Minimax Algorithm

Algorithmic Formulation

▶ Recursive algorithm:
▶ If node is terminal: return its utility.
▶ If node is MAX: return max of minimax values of children.
▶ If node is MIN: return min of minimax values of children.

▶ Guarantees optimal play under perfect information.

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 21 / 59



Minimax Algorithm

Minimax Algorithm (Pseudocode)

Algorithm 1 Minimax(s)
1: if s is terminal then
2: return u(s) ▷ utility value of terminal state
3: else if player(s) = MAX then
4: return maxa∈A(s) Minimax(T (s, a))
5: else
6: return mina∈A(s) Minimax(T (s, a))
7: end if

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 22 / 59



Minimax Algorithm

Minimax Algorithm

Algorithm 2 Minimax(s)
1: return MAX-VALUE(s)

Algorithm 3 Max-Value(s)
1: if TERMINAL(s) then
2: return u(s)
3: end if
4: v ← −∞
5: for a ∈ A(s) do
6: v ← max(v ,MIN-VALUE(T (s, a)))
7: end for
8: return v

Algorithm 4 Min-Value(s)
1: if TERMINAL(s) then
2: return u(s)
3: end if
4: v ← +∞
5: for a ∈ A(s) do
6: v ← min(v ,MAX-VALUE(T (s, a)))
7: end for
8: return v

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 23 / 59



Minimax Algorithm

Worked Example

▶ Consider a small game tree (e.g., tic–tac–toe fragment).
▶ Annotate terminal states with utilities.
▶ Show values being propagated upward.
▶ Root’s minimax value determines the best move for MAX.

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 24 / 59



Minimax Algorithm

Minimax: Step 0

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 25 / 59



Minimax Algorithm

Minimax: Step 1

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 26 / 59



Minimax Algorithm

Minimax: Step 2

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 27 / 59



Minimax Algorithm

Minimax: Step 3

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 28 / 59



Minimax Algorithm

Minimax: Step 4

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 29 / 59



Minimax Algorithm

Minimax: Step 5

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 30 / 59



Minimax Algorithm

Minimax: Step 6

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 31 / 59



Minimax Algorithm

Minimax: Step 7

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 32 / 59



Alpha–Beta Pruning

Alpha–Beta Pruning

▶ Prune branches while preserving the minimax result.

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 33 / 59



Alpha–Beta Pruning

Why Alpha–Beta Pruning?

▶ Minimax is complete and optimal, but explores the entire game tree.
▶ Number of nodes grows exponentially: O(bd ) for branching factor b and depth d .
▶ Alpha–Beta pruning reduces the effective branching factor.

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 34 / 59



Alpha–Beta Pruning

Key Idea of Alpha–Beta

▶ Maintain two bounds while searching:
▶ α: best value MAX can guarantee so far.
▶ β: best value MIN can guarantee so far.

▶ If a node’s value is outside these bounds, further exploration can be pruned.

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 35 / 59



Alpha–Beta Pruning

Pruning in Action

▶ As we traverse the tree, some branches cannot influence the final decision.
▶ These branches are cut off (“pruned”) without full evaluation.
▶ Example: once MAX has a choice better than what MIN allows elsewhere, skip the

rest.
▶ Important: pruning never changes the final minimax value.

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 36 / 59



Alpha–Beta Pruning

Alpha–Beta Pruning (Wrapper)

Algorithm 5 AlphaBeta(s)
1: return MAX-VALUE-AB(s, α = −∞, β = +∞)

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 37 / 59



Alpha–Beta Pruning

Alpha–Beta: MAX-VALUE-AB

Algorithm 6 Max-Value-AB(s, α, β)
1: if TERMINAL(s) then
2: return u(s)
3: end if
4: v ← −∞
5: for a ∈ A(s) do
6: v ← max

(
v , MIN-VALUE-AB(T (s, a), α, β)

)
7: α← max(α, v)
8: if α ≥ β then
9: break ▷ prune: MIN has a better option elsewhere

10: end if
11: end for
12: return v

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 38 / 59



Alpha–Beta Pruning

Alpha–Beta: MIN-VALUE-AB

Algorithm 7 Min-Value-AB(s, α, β)
1: if TERMINAL(s) then
2: return u(s)
3: end if
4: v ← +∞
5: for a ∈ A(s) do
6: v ← min

(
v , MAX-VALUE-AB(T (s, a), α, β)

)
7: β ← min(β, v)
8: if α ≥ β then
9: break ▷ prune: MAX has a better option elsewhere

10: end if
11: end for
12: return v

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 39 / 59



Alpha–Beta Pruning

Properties of Alpha–Beta

▶ Returns the same optimal move as minimax.
▶ Reduces number of nodes expanded.
▶ With perfect move ordering: O(bd/2) instead of O(bd ).
▶ In practice: huge efficiency gain, especially in deeper trees.

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 40 / 59



Alpha–Beta Pruning

Alpha–Beta: Step 0

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 41 / 59



Alpha–Beta Pruning

Alpha–Beta: Step 1

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 42 / 59



Alpha–Beta Pruning

Alpha–Beta: Step 2

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 43 / 59



Alpha–Beta Pruning

Alpha–Beta: Step 3

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 44 / 59



Alpha–Beta Pruning

Alpha–Beta: Step 4

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 45 / 59



Alpha–Beta Pruning

Alpha–Beta: Step 5

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 46 / 59



Alpha–Beta Pruning

Alpha–Beta: Step 6

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 47 / 59



Alpha–Beta Pruning

Alpha–Beta: Step 7

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 48 / 59



Alpha–Beta Pruning

Alpha–Beta: Step 8

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 49 / 59



Practical Considerations

Practical Considerations

▶ Depth limits, evaluation functions, and the horizon effect.

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 50 / 59



Practical Considerations

Depth Limits

▶ In real games, the search tree is too large to fully expand.
▶ A common approach: limit search to a fixed depth d .
▶ Tradeoff: shallower depth is faster but less accurate.

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 51 / 59



Practical Considerations

Evaluation Functions

▶ Used at cutoff nodes to approximate utility values.
▶ Must be quick to compute.
▶ Should correlate well with the true chance of winning.
▶ Example: material balance in chess.

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 52 / 59



Practical Considerations

Alpha–Beta with Cutoff

▶ Use Alpha–Beta pruning, but stop at depth limit d .
▶ At cutoff nodes, apply an evaluation function instead of u(s).
▶ This is the standard approach in practice (e.g., chess programs).

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 53 / 59



Practical Considerations

Alpha–Beta with Cutoff (Wrapper)

Algorithm 8 AlphaBetaCutoff(s, d )
1: return MAX-VALUE-AB(s, α = −∞, β = +∞, d )

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 54 / 59



Practical Considerations

Alpha–Beta with Cutoff: MAX-VALUE-AB

Algorithm 9 Max-Value-AB(s, α, β, d )
1: if s is terminal then
2: return u(s) ▷ true utility at terminal
3: else if d = 0 then
4: return Eval(s) ▷ approximate value at cutoff
5: end if
6: v ← −∞
7: for a ∈ A(s) do
8: v ← max

(
v , MIN-VALUE-AB(T (s, a), α, β, d − 1)

)
9: α← max(α, v)

10: if α ≥ β then
11: break ▷ beta cutoff (prune)
12: end if
13: end for
14: return v

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 55 / 59



Practical Considerations

Alpha–Beta with Cutoff: MIN-VALUE-AB

Algorithm 10 Min-Value-AB(s, α, β, d )
1: if s is terminal then
2: return u(s) ▷ true utility at terminal
3: else if d = 0 then
4: return Eval(s) ▷ approximate value at cutoff
5: end if
6: v ← +∞
7: for a ∈ A(s) do
8: v ← min

(
v , MAX-VALUE-AB(T (s, a), α, β, d − 1)

)
9: β ← min(β, v)

10: if α ≥ β then
11: break ▷ alpha cutoff (prune)
12: end if
13: end for
14: return v

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 56 / 59



Practical Considerations

Horizon Effect

▶ Artificial cutoff can miss important consequences beyond d .
▶ Example: a forced loss that occurs just past the horizon.
▶ Agents may overvalue moves that only delay bad outcomes.

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 57 / 59



Practical Considerations

Tradeoffs

▶ Deeper search⇒ more accurate but slower.
▶ Shallower search⇒ faster but less accurate.
▶ Move ordering heuristics improve efficiency of Alpha–Beta pruning.

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 58 / 59



Practical Considerations

Modern Connections

▶ Classical evaluation functions vs. learned neural networks (e.g., AlphaZero).
▶ Monte Carlo methods (e.g., Monte Carlo Tree Search in Go).
▶ Balance of search and approximation is still central today.

Curtis Larsen (Utah Tech University) Adversarial Search September 4, 2025 59 / 59


	Motivation & Applications
	Games as Environments
	Game Trees
	Minimax Algorithm
	Alpha–Beta Pruning
	Practical Considerations

