
Search II: Heuristics and A*

Heuristics and A* Search
CS 4300 — Fall 2025

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 1 / 25



Heuristic Search & A*

Uniform-Cost Search (UCS): Reintroduction

▶ UCS expands the node with lowest path cost g(n).
▶ Frontier is a priority queue ordered by g(n).
▶ Goal test occurs when a node is popped, ensuring optimality.
▶ Appropriate when step costs are non-uniform and positive.

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 2 / 25



Heuristic Search & A*

UCS (Graph Search)

Algorithm 1 *
Uniform-Cost Graph Search (UCS)
Require: initial state s0; A(s); T(s, a); GOAL-TEST(s); step cost c(s, a, s ′) > 0
1: Initialize the frontier as an empty min-priority queue (keyed by g)
2: g(s0)← 0; PUSH(frontier, s0, key = g(s0))
3: best g← empty map from state→ best known path cost; best g[s0]← 0
4: while frontier is not empty do
5: n ← POP-MIN(frontier) ▷ state with lowest g(n)
6: if GOAL-TEST(n.state) then
7: return solution path from s0 to n.state
8: end if
9: for each a ∈ A(n.state) do

10: s ′ ← T(n.state, a)
11: g ′ ← g(n) + c(n.state, a)
12: if s ′ /∈ best g or g ′ < best g[s ′] then
13: best g[s ′]← g ′

14: PUSH(frontier, s ′, key = g ′)
15: end if
16: end for
17: end while
18: return failure

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 3 / 25



Heuristic Search & A*

UCS Walkthrough (0/6): Init

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 4 / 25



Heuristic Search & A*

UCS Walkthrough (1/6): Dequeue Start

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 5 / 25



Heuristic Search & A*

UCS Walkthrough (2/6): Dequeue s2

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 6 / 25



Heuristic Search & A*

UCS Walkthrough (3/6): Dequeue s1

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 7 / 25



Heuristic Search & A*

UCS Walkthrough (4/6): Dequeue s4

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 8 / 25



Heuristic Search & A*

UCS Walkthrough (5/6): Dequeue s6

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 9 / 25



Heuristic Search & A*

UCS Walkthrough (6/6): Dequeue s5 = Goal

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 10 / 25



Heuristic Search & A*

Motivation for Heuristics

▶ UCS only considers cost so far, g(n).
▶ This can cause many unnecessary expansions if the goal is deep

or far.
▶ Idea: add an estimate of the remaining cost.
▶ Define a heuristic function h(n):

▶ h(n) ≈ estimated cost from n to a goal.
▶ Example: Manhattan distance in a grid world.

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 11 / 25



Heuristic Search & A*

From UCS to A*

▶ Define the evaluation function:

f (n) = g(n) + h(n).

▶ g(n) = cost so far, h(n) = estimated cost-to-go.
▶ With a good heuristic, search focuses on promising areas.
▶ Guarantees:

▶ Admissibility: h(n) never overestimates true cost.
▶ Consistency: heuristic obeys triangle inequality.

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 12 / 25



Heuristic Search & A*

Consistent Heuristics

▶ A heuristic h is consistent (or monotone) if for every node n,
successor n ′ by action a:

h(n) ≤ c(n, a,n ′) + h(n ′)

▶ This is the triangle inequality: estimated cost at n is never more
than the step cost plus estimate from n ′.

▶ Consistency implies admissibility.
▶ With a consistent heuristic:

▶ f (n) = g(n) + h(n) is non-decreasing along a path.
▶ Once a node is expanded, the best path to it has been found (no

re-expansions needed).

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 13 / 25



Heuristic Search & A*

A* (Tree Search)

Algorithm 2 A* (Tree Search)
Require: Problem with initial state s0, actions A(s), transition T(s, a),

GoalTest(s, a), step cost c(s, a, s ′) > 0, heuristic h(s) ≥ 0
1: frontier← min-priority queue by f (n) = g(n) + h(n)
2: push node(s0) with g(s0) = 0, f (s0) = g(s0) + h(s0)
3: while frontier not empty do
4: n ← pop min(frontier) ▷ lowest f
5: if GoalTest(n.state) then
6: return solution by following n ’s parents
7: end if
8: for all a ∈ A(n.state) do
9: s ′ ← T(n.state, a)

10: g ′ ← g(n) + c(n.state, a, s ′)
11: push node(s ′) with parent n and key f ′ = g ′ + h(s ′)
12: end for
13: end while
14: return failure

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 14 / 25



Heuristic Search & A*

A* (Graph Search): with best-known g-costs

Algorithm 3 A* (Graph Search)
Require: s0, A(s), T(s, a), GoalTest(s, a), c(s, a, s ′) > 0, h(s)

1: frontier← min-PQ by f = g + h; push node(s0) with g = 0, f = h(s0)
2: best g← map (state→ best known g); best g[s0]← 0
3: while frontier not empty do
4: n ← pop min(frontier)
5: if GoalTest(n.state) then return solution by following n ’s parents
6: end if
7: for all a ∈ A(n.state) do
8: s ′ ← T(n.state, a)
9: g ′ ← g(n) + c(n.state, a, s ′)

10: if s ′ /∈ best g or g ′ < best g[s ′] then
11: best g[s ′]← g ′

12: push/DecreaseKey node(s ′) with parent n and f ′ = g ′ + h(s ′)
13: end if
14: end for
15: end while
16: return failure

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 15 / 25



Heuristic Search & A*

A* Search (Tree) — Intuition

Key ideas

▶ Score nodes with
f (n) = g(n)+h(n).

▶ Pop the lowest f
from a min-PQ.

▶ g : path cost so far.
h: est. cost to goal.

▶ Goal test on pop
⇒ optimal if h is
admissible &
consistent.

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 16 / 25



Heuristic Search & A*

A* Search — Step 0

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 17 / 25



Heuristic Search & A*

A* Search — Step 1

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 18 / 25



Heuristic Search & A*

A* Search — Step 2

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 19 / 25



Heuristic Search & A*

A* Search — Step 3

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 20 / 25



Heuristic Search & A*

A* Search — Step 4 (Goal Found)

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 21 / 25



Heuristic Search & A*

Properties of A*

▶ Completeness: Yes, if step costs ≥ ϵ > 0 and branching factor
b <∞.

▶ Optimality:
▶ With admissible h, A* (tree search) is optimal.
▶ With consistent h, A* (graph search) is optimal and never needs to

reopen expanded nodes.
▶ Time/Space Complexity:

▶ Worst case: O(bC
∗/ϵ), exponential in the solution depth bound.

▶ C ∗ = cost of the optimal solution.
▶ ϵ = minimum positive step cost.
▶ Effective branching factor b∗ is reduced with a good heuristic:

O
(
(b∗)C

∗/ϵ
)

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 22 / 25



Heuristic Search & A*

Effective Depth of A*

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 23 / 25



Heuristic Search & A*

Designing Heuristics

▶ Problem relaxations: remove constraints to get h(n) from an
easier subproblem.

▶ Abstractions / pattern databases: precompute exact distances
in abstracted state spaces.

▶ Additive heuristics: when subproblems are independent
(h = h1 + h2 is still admissible).

▶ 8-puzzle: h1=#misplaced tiles; h2=sum of Manhattan distances;
h2 dominates h1.

▶ Practical tip: Start with a cheap admissible h, measure node
expansions, iterate.

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 24 / 25



Heuristic Search & A*

Summary of A*

▶ UCS: expands node with lowest cost so far g(n).
▶ A*: expands node with lowest estimated total cost

f (n) = g(n) + h(n).
▶ With admissible, consistent heuristics:

▶ A* is optimal.
▶ A* is often far more efficient than UCS.

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 25 / 25


	Heuristic Search & A*

