Intelligent Agents J

Curtis Larsen

Utah Tech University—Computing

Fall 2025

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 1/33

Uninformed Search: Day 2

Problem Formulation Recap

A search problem is defined by 5 components:

1.

Initial state: s
(the starting point of the search)

Actions: A(s) — {a1,a,...}
Returns the set of possible actions in state s

Transition model: T'(s,a) — &
Returns the resulting state when action « is applied in state s

Goal test: G(s) — {true,false}
Checks whether state s is a goal state

Path cost: C(s,a,s") — Rxo
Assigns a numeric cost to the step from s to s’ via a

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025

2/33

Uninformed Search: Day 2

Search Tree: Actions and Transitions

Initial
State

A(s0) - al A(s0) - a2

e T(s, a) » sl

A(sl) -» a4

T(s, a) » s2

A(s2) » a5

A(sl) » a3

A(s2) - a6

T(s, a) » s3 T(s, a) » s4 T(s, a) » s5 T(s, a) » s6

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025

3/33

Uninformed Search: Day 2

From Formulation to Algorithms

» Now that we know how to define a search problem. ..
> Let’s look at systematic strategies for exploring the state space.

> Breadth First Search (BFS)

» Uniform Cost Search (UCS)

> Depth First Search (DFS)

» Depth Limited Search (DLS)

> lterative Deepening Search (IDS)

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025

4/33

Breadth-First Search (BFS): Intuition

» Expand shallowest nodes first.
» Explore all nodes at depth d before d + 1.

Curtis Larsen (Utah Tech University) CS 4300

Breadth-First Search (BFS)

Initial
State

Fall 2025

5/33

BFS: Step 0

BFS: Tree State BFS Frontier (Queue)
Init sO

d=0 Initial
State

d=1

d=2

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 6/33

BFS: Step 1

BFS: Tree State BFS Frontier (Queue)
Deq sO sl s2

d=0 Initial
State

d=1

d=2

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 7/33

BFS: Step 2

BFS: Tree State BFS Frontier (Queue)
Deq sl s2 s3 s4

d=0 Initial
State

d=1

d=2

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 8/33

BFS: Step 3

BFS: Tree State BFS Frontier (Queue)
Deq s2 s3 s4 s5 s6

d=0 Initial
State

d=1

d=2

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 9/33

BFS: Step 4

BFS: Tree State BFS Frontier (Queue)
Deq s3 s4 s5 s6

d=0 Initial
State

d=1

d=2

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 10/33

BFS: Step 5

BFS: Tree State BFS Frontier (Queue)
Deq s4 s5 s6

d=0 Initial
State

d=1

d=2

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 11/33

BFS: Step 6

BFS: Tree State BFS Frontier (Queue)
D 5 = GOAL
d=0 Initial €as
State
d=1
d=2

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 12/33

Breadth-First Tree Search (BFS) Algorithm

Algorithm 1 *

Breadth-First Tree Search (BFS)

1: Initialize the frontier as an empty FIFO queue
2: ENQUEUE(frontier, so)

3: while frontier is not empty do

n < DEQUEUE(frontier)

if GOAL-TEST(n) then

return solution path from sy to n

end if
for each a € Actions(n) do
: s « Transition(n, a)

10: ENQUEUE(frontier, s’)

11: end for
12: end while
13: return failure

©CoNaR

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 13/33

Breadth-First Graph Search (BFS) Algorithm

Algorithm 2 *
Breadth-First Graph Search (BFS)
: Initialize the frontier as an empty FIFO queue
: ENQUEUE(frontier, so)
: Initialize the explored set as empty
: while frontier is not empty do
n < DEQUEUE(frontier)
if GOAL-TEST(n) then
return solution path from sy to n
end if
Add n to explored
10: for each a € Actions(n) do

©RNDTO A WN

11: s’ «+ Transition(n, a)

12: if s’ ¢ frontier and s’ ¢ explored then
13: ENQUEUE(frontier, s’)

14: end if

15: end for

16: end while

17: return failure

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 14/33

BFS Properties

» Complete (if branching factor finite).
» Optimal for uniform step costs.
» Time/space complexity: O(b?).

Curtis Larsen (Utah Tech University) CS 4300

Fall 2025

15/33

Uniform-Cost Search (UCS): Intuition

Uniform-Cost Search Intuigieq; Non-Uniform Edge Costs
Start

> Like BFS, but expands the cheapest path so
far, not the shallowest.

» Appropriate when step costs are
non-uniform and strictly positive.

» Frontier is a min-priority queue keyed by
path cost g(n).

» Goal is tested when a node is popped =2
(removed as lowest-cost), ensuring
optimality.

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 16/33

Frontier & Explored Sets

> Frontier: Min-heap / priority queue ordered by g(n).
» Explored/Visited: Track the best known cost to each state.

» Duplicate handling:

> If we discover a cheaper path to a state already in frontier/explored, update
(decrease-key or reinsert) and keep the cheaper one.
» Discard dominated (more expensive) paths to the same state.

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 17/33

UCS (Graph Search) — Pseudocode

Algorithm 3 *

Uniform-Cost Graph Search (UCS)

Require: initial state so; Actions(-); Transition(-, -); GOAL-TEST(:); step cost ¢(s, a) > 0
1: Initialize the frontier as an empty min-priority queue (keyed by g)

2: g(s0) + 0; PUSH(frontier, so, key = g(s0))

3: best_g < empty map from state — best known path cost; best_g[so] - 0

4: while frontier is not empty do

5: n < POP-MIN(frontier) > state with lowest g(n)
6: if GOAL-TEST(n) then

7: return solution path from s, to n

8: end if

9: for each a € Actions(n) do

10: s’ + Transition(n, a)

11: g« g(n) + c(n,a)

12: if s’ ¢ best.g or ¢’ < best_g[s'] then
13: best_g[s'] + ¢’

14: PUSH(frontier, s, key = g’)

15: end if

16: end for

17: end while

18: return failure

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 18/33

Why Goal-Test on Pop?

» When a node is popped, it has the minimum g among all frontier nodes.

» With strictly positive step costs, any other path to the goal would be > its current g.
» Therefore, the first time a goal state is popped, its path is optimal.

» Testing at generation can break optimality (a cheaper path may appear later).

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 19/33

Properties of UCS

> Completeness: Yes, if all step costs ¢ > 0 and minimum step cost € > 0.
> Optimality: Yes, returns a least-cost solution under ¢ > 0.

c*
» Time: Expands all nodes with g(n) < C*; often expressed as O(blﬂ € J) in the

worst case.
» Space: Same order as time (frontier can be large).

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 20/33

Uniform-Cost Search

Implementation Gotchas

> Decrease-key support: if unavailable, insert a new entry and let the stale one be
ignored on pop.

> Visited vs. best_g: In weighted graphs, a simple “visited set” is insufficient—track
best known g.

> Zero/Negative costs: Zero-cost cycles can cause huge frontiers; negative costs
break UCS assumptions.

» Tie-breaking: Define stable policy (e.g., FIFO by insertion time) for deterministic
debugging/diagrams.

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 21/33

When to Prefer UCS

» Costs vary and you require optimal solutions.
» No trustworthy heuristic is available (otherwise consider A*).
> Step costs are strictly positive and not dominated by zero-cost cycles.

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025

22/33

UCS Summary

» UCS systematically explores cheapest paths first using a min-priority queue on g.
> Test the goal only when popped to preserve optimality.
» Equivalent to Dijkstra for shortest paths; reduces to BFS when costs are uniform.

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 23/33

Depth-First Search (DFS): Intuition

» Dive down a path as far as possible before
backtracking.

» Uses a stack (explicit or recursion) for the
frontier.

» Great when solutions are deep and
branching factor is manageable.

> Risks: can get stuck in deep/loopy parts
without care.

» Tree-DFS vs. Graph-DFS (with explored
set to avoid repeats).

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 24/33

DFS (Tree Search)

Algorithm 4 DFS-Tree (iterative, stack-based; explicit Actions and Transition)

1: frontier + stack containing Make-Node(problem.initial)

2: while frontier # () do
node < POP(frontier) > LIFO
if GOAL-TEST(node.state) then

return SOLUTION(node)

end if
A + ACTIONS(problem, node.state)
for each « € REVERSE(4) do > reverse so leftmost expands first
9 s’ < TRANSITION(node.state, a)
10: child < Make-Node(s’, node, a)
11: PUSH(frontier, child)
12: end for
13: end while
14: return FAILURE

Notes: This is tree search (no explored set). For graphs or repeated states, use the next variant.
Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 25/33

DFS (Graph Search) — Stack-Based

Algorithm 5 DFS-Graph (iterative; explicit Actions and Transition)

1: frontier < stack containing Make-Node(problem.initial)
2: explored <
3: while frontier # () do

o
10:
11:
12:
13:
14:
15:
16:
17:
18:

4
5:
6:
7:
8

node < POP(frontier)
if GOAL-TEST(node.state) then
return SOLUTION(node)
end if
if node.state ¢ explored then
add node.state to explored
A < ACTIONS(problem, node.state)
for each « € REVERSE(A) do
s' <— TRANSITION(node.state, a)
child < Make-Node(s', node, a)
if s’ ¢ explored and no node in frontier has state s’ then
PUsH(frontier, child)
end if
end for
end if

19: end while
20: return FAILURE

Key: LIFO frontier implements depth-first behavior; the explored set prevents cycles and re-expansion.

Curtis Larsen (Utah Tech University) CS 4300

Fall 2025

26/33

DFS: Properties and Trade-offs

» Completeness:
> Tree-DFS: No (can go down infinite
branch).
> Graph-DFS: No in infinite-depth graphs;
Yes if finite and cycles blocked.
» Optimality: No (does not expand by path
cost or shallowest depth).

» Time: O(b™) where b branching factor, m
max depth.

» Space: O(bm) (linear in depth; much
better than BFS).

Curtis Larsen (Utah Tech University) CS 4300

When is DFS attractive?
» Memory constraints are tight.

» Solutions are deep and the graph
isn’t too loopy.

» Need a quick, low-overhead probe
of the search space.
Gotchas
» Infinite paths or very deep trees.
» Heavily order-dependent behavior.

Fall 2025 27/33

Depth-Limited Search (DLS): Idea

» DFS with a hard depth cutoff L.
> Explore along a path but do not expand nodes deeper than L.

» Returns one of three outcomes:
> a solution (goal found),
» CUTOFF (depth limit prevented full search),
> FAILURE (no solution in the explored portion).
» Useful when you have a reasonable bound on solution depth, or as the inner loop of
Iterative Deepening.

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 28/33

DLS (Tree Search): lterative, Stack-Based

Algorithm 6 DLS-Tree(problem, L) (explicit Actions and Transition)
1: frontier + stack containing Make-Node(problem.initial, depth = 0)
2: cutoff « false
3: while frontier # () do

4: node < POP(frontier) > LIFO
5: if GOAL-TEST(node.state) then

6: return SOLUTION(node)

7: end if

8: if node.depth = L then

9: cutoff « true > hit the limit; do not expand
10: continue

11: end if

12: A < ACTIONS(problem, node.state)

13: for each a € REVERSE(A) do > reverse so leftmost is popped next
14: s’ < TRANSITION(node.state, a)

15: child < Make-Node(s', node, a, depth = node.depth + 1)

16: PUSH(frontier, child)

17: end for

18: end while

19: return CUTOFF if cutoff else FAILURE

Tree-search version (no explored set). For graphs, add an explored set and skip repeated states.

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 29/33

Depth-Limited Search: Properties

Guarantees Complexity
» Completeness: » Time: O(b%)
> |f a solution exists at depth < L and > Space: O(bL) (like DFS, linear in
branching is finite: Yes. depth)
> Otherwise: No (may return CUTOFF).
When to use

» Optimality: No in general (not by
shallowest or least-cost). > You have a good bound on
solution depth.
» Memory is tight but pure DFS risks
going too deep.
> As the inner loop of Iterative
Deepening (L =0,1,2,...).

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 30/33

lterative Deepening DFS (IDS): A DFS/BFS Hybrid

» Performs DFS to depth limit L, then increases L =0, 1,2, ...

> Completeness: Yes (like BFS) if step costs uniform and branching finite.
> Optimality: Yes for unit step costs (finds shallowest goal).

» Time: O(b?); Space: O(bd) (like DFS).

» Why use it? BFS-like guarantees with DFS-like space.

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 31/33

Uninformed Search: Summary Table

Algorithm Frontier (Data Structure) Complete? Optimal? Time Space

BFS FIFO queue Yes@ Yes2 O(bdt1) O(bd+1)

ucs Min-priority queue by g(n) YesP Yes 0 (b 1+ LC*/gJ) same

DFS LIFO stack No© No O(b™) O(bm)

DLS (¢) Stack + depth limit ¢ No/Yes? No O(bmin(t,m)) O(b min(¢, m))
IDS Repeated DLS for limits 0..d Yes Yes? o(b%) O(bd)

Symbols: b = branching factor, d = depth of shallowest goal, m = max depth, C* = optimal solution cost, € = minimum
step cost > 0.
a Assuming unit step costs. P Assuming all step costs > ¢ > 0. ¢ May fail on infinite-depth trees or cycles without
limits/explored set. @ Complete if £ > d (finite b).

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 32/33

Day 2 Wrap-Up

» Uninformed algorithms: BFS, UCS, DFS, DLS, IDS.
» Tradeoffs in completeness, optimality, efficiency.
» Motivation: we need heuristics to go further.

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025

33/33

	Uninformed Search: Day 2
	Breadth First Search
	Uniform-Cost Search
	Depth-First Search
	Depth Limited Search
	Iterative Deepening Search
	Wrap-up

