
Intelligent Agents

Curtis Larsen

Utah Tech University—Computing

Fall 2025

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 1 / 33



Uninformed Search: Day 2

Problem Formulation Recap

A search problem is defined by 5 components:
1. Initial state: s0

(the starting point of the search)
2. Actions: A(s) → {a1, a2, . . . }

Returns the set of possible actions in state s

3. Transition model: T (s, a) → s ′

Returns the resulting state when action a is applied in state s

4. Goal test: G(s) → {true, false}
Checks whether state s is a goal state

5. Path cost: C (s, a, s ′) → R≥0

Assigns a numeric cost to the step from s to s ′ via a

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 2 / 33



Uninformed Search: Day 2

Search Tree: Actions and Transitions

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 3 / 33



Uninformed Search: Day 2

From Formulation to Algorithms

▶ Now that we know how to define a search problem. . .
▶ Let’s look at systematic strategies for exploring the state space.

▶ Breadth First Search (BFS)
▶ Uniform Cost Search (UCS)
▶ Depth First Search (DFS)
▶ Depth Limited Search (DLS)
▶ Iterative Deepening Search (IDS)

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 4 / 33



Breadth First Search

Breadth-First Search (BFS): Intuition

▶ Expand shallowest nodes first.
▶ Explore all nodes at depth d before d + 1.

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 5 / 33



Breadth First Search

BFS: Step 0

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 6 / 33



Breadth First Search

BFS: Step 1

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 7 / 33



Breadth First Search

BFS: Step 2

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 8 / 33



Breadth First Search

BFS: Step 3

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 9 / 33



Breadth First Search

BFS: Step 4

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 10 / 33



Breadth First Search

BFS: Step 5

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 11 / 33



Breadth First Search

BFS: Step 6

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 12 / 33



Breadth First Search

Breadth-First Tree Search (BFS) Algorithm

Algorithm 1 *
Breadth-First Tree Search (BFS)
1: Initialize the frontier as an empty FIFO queue
2: ENQUEUE(frontier, s0)
3: while frontier is not empty do
4: n ← DEQUEUE(frontier)
5: if GOAL-TEST(n) then
6: return solution path from s0 to n
7: end if
8: for each a ∈ Actions(n) do
9: s ′ ← Transition(n, a)

10: ENQUEUE(frontier, s ′)
11: end for
12: end while
13: return failure

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 13 / 33



Breadth First Search

Breadth-First Graph Search (BFS) Algorithm

Algorithm 2 *
Breadth-First Graph Search (BFS)
1: Initialize the frontier as an empty FIFO queue
2: ENQUEUE(frontier, s0)
3: Initialize the explored set as empty
4: while frontier is not empty do
5: n ← DEQUEUE(frontier)
6: if GOAL-TEST(n) then
7: return solution path from s0 to n
8: end if
9: Add n to explored

10: for each a ∈ Actions(n) do
11: s ′ ← Transition(n, a)
12: if s ′ /∈ frontier and s ′ /∈ explored then
13: ENQUEUE(frontier, s ′)
14: end if
15: end for
16: end while
17: return failure

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 14 / 33



Breadth First Search

BFS Properties

▶ Complete (if branching factor finite).
▶ Optimal for uniform step costs.
▶ Time/space complexity: O(bd ).

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 15 / 33



Uniform-Cost Search

Uniform-Cost Search (UCS): Intuition

▶ Like BFS, but expands the cheapest path so
far, not the shallowest.

▶ Appropriate when step costs are
non-uniform and strictly positive.

▶ Frontier is a min-priority queue keyed by
path cost g(n).

▶ Goal is tested when a node is popped
(removed as lowest-cost), ensuring
optimality.

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 16 / 33



Uniform-Cost Search

Frontier & Explored Sets

▶ Frontier: Min-heap / priority queue ordered by g(n).
▶ Explored/Visited: Track the best known cost to each state.
▶ Duplicate handling:

▶ If we discover a cheaper path to a state already in frontier/explored, update
(decrease-key or reinsert) and keep the cheaper one.

▶ Discard dominated (more expensive) paths to the same state.

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 17 / 33



Uniform-Cost Search

UCS (Graph Search) — Pseudocode

Algorithm 3 *
Uniform-Cost Graph Search (UCS)
Require: initial state s0; Actions(·); Transition(·, ·); GOAL-TEST(·); step cost c(s, a) > 0
1: Initialize the frontier as an empty min-priority queue (keyed by g)
2: g(s0)← 0; PUSH(frontier, s0, key = g(s0))
3: best g← empty map from state→ best known path cost; best g[s0]← 0
4: while frontier is not empty do
5: n ← POP-MIN(frontier) ▷ state with lowest g(n)
6: if GOAL-TEST(n) then
7: return solution path from s0 to n
8: end if
9: for each a ∈ Actions(n) do

10: s ′ ← Transition(n, a)
11: g ′ ← g(n) + c(n, a)
12: if s ′ /∈ best g or g ′ < best g[s ′] then
13: best g[s ′]← g ′

14: PUSH(frontier, s ′, key = g ′)
15: end if
16: end for
17: end while
18: return failure

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 18 / 33



Uniform-Cost Search

Why Goal-Test on Pop?

▶ When a node is popped, it has the minimum g among all frontier nodes.
▶ With strictly positive step costs, any other path to the goal would be ≥ its current g .
▶ Therefore, the first time a goal state is popped, its path is optimal.
▶ Testing at generation can break optimality (a cheaper path may appear later).

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 19 / 33



Uniform-Cost Search

Properties of UCS

▶ Completeness: Yes, if all step costs c > 0 and minimum step cost ϵ > 0.
▶ Optimality: Yes, returns a least-cost solution under c > 0.

▶ Time: Expands all nodes with g(n) < C ∗; often expressed as O

(
b
1+

⌊
C∗

ϵ

⌋)
in the

worst case.
▶ Space: Same order as time (frontier can be large).

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 20 / 33



Uniform-Cost Search

Implementation Gotchas

▶ Decrease-key support: if unavailable, insert a new entry and let the stale one be
ignored on pop.

▶ Visited vs. best g: In weighted graphs, a simple “visited set” is insufficient—track
best known g .

▶ Zero/Negative costs: Zero-cost cycles can cause huge frontiers; negative costs
break UCS assumptions.

▶ Tie-breaking: Define stable policy (e.g., FIFO by insertion time) for deterministic
debugging/diagrams.

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 21 / 33



Uniform-Cost Search

When to Prefer UCS

▶ Costs vary and you require optimal solutions.
▶ No trustworthy heuristic is available (otherwise consider A*).
▶ Step costs are strictly positive and not dominated by zero-cost cycles.

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 22 / 33



Uniform-Cost Search

UCS Summary

▶ UCS systematically explores cheapest paths first using a min-priority queue on g .
▶ Test the goal only when popped to preserve optimality.
▶ Equivalent to Dijkstra for shortest paths; reduces to BFS when costs are uniform.

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 23 / 33



Depth-First Search

Depth-First Search (DFS): Intuition

▶ Dive down a path as far as possible before
backtracking.

▶ Uses a stack (explicit or recursion) for the
frontier.

▶ Great when solutions are deep and
branching factor is manageable.

▶ Risks: can get stuck in deep/loopy parts
without care.

▶ Tree-DFS vs. Graph-DFS (with explored
set to avoid repeats).

DFS dives deep along the leftmost child
first (given a fixed order).

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 24 / 33



Depth-First Search

DFS (Tree Search)

Algorithm 4 DFS-Tree (iterative, stack-based; explicit Actions and Transition)
1: frontier ← stack containing Make-Node(problem.initial)
2: while frontier ̸= ∅ do
3: node ← POP(frontier ) ▷ LIFO
4: if GOAL-TEST(node.state) then
5: return SOLUTION(node)
6: end if
7: A← ACTIONS(problem,node.state)
8: for each a ∈ REVERSE(A) do ▷ reverse so leftmost expands first
9: s ′ ← TRANSITION(node.state, a)

10: child ← Make-Node(s ′,node, a)
11: PUSH(frontier , child )
12: end for
13: end while
14: return FAILURE

Notes: This is tree search (no explored set). For graphs or repeated states, use the next variant.
Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 25 / 33



Depth-First Search

DFS (Graph Search) — Stack-Based

Algorithm 5 DFS-Graph (iterative; explicit Actions and Transition)
1: frontier ← stack containing Make-Node(problem.initial)
2: explored ← ∅
3: while frontier ̸= ∅ do
4: node ← POP(frontier )
5: if GOAL-TEST(node.state) then
6: return SOLUTION(node)
7: end if
8: if node.state /∈ explored then
9: add node.state to explored

10: A← ACTIONS(problem,node.state)
11: for each a ∈ REVERSE(A) do
12: s ′ ← TRANSITION(node.state, a)
13: child ← Make-Node(s ′,node, a)
14: if s ′ /∈ explored and no node in frontier has state s ′ then
15: PUSH(frontier , child )
16: end if
17: end for
18: end if
19: end while
20: return FAILURE

Key: LIFO frontier implements depth-first behavior; the explored set prevents cycles and re-expansion.

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 26 / 33



Depth-First Search

DFS: Properties and Trade-offs

▶ Completeness:
▶ Tree-DFS: No (can go down infinite

branch).
▶ Graph-DFS: No in infinite-depth graphs;

Yes if finite and cycles blocked.
▶ Optimality: No (does not expand by path

cost or shallowest depth).
▶ Time: O(bm) where b branching factor, m

max depth.
▶ Space: O(bm) (linear in depth; much

better than BFS).

When is DFS attractive?
▶ Memory constraints are tight.
▶ Solutions are deep and the graph

isn’t too loopy.
▶ Need a quick, low-overhead probe

of the search space.

Gotchas
▶ Infinite paths or very deep trees.
▶ Heavily order-dependent behavior.

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 27 / 33



Depth Limited Search

Depth-Limited Search (DLS): Idea

▶ DFS with a hard depth cutoff L.
▶ Explore along a path but do not expand nodes deeper than L.
▶ Returns one of three outcomes:

▶ a solution (goal found),
▶ CUTOFF (depth limit prevented full search),
▶ FAILURE (no solution in the explored portion).

▶ Useful when you have a reasonable bound on solution depth, or as the inner loop of
Iterative Deepening.

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 28 / 33



Depth Limited Search

DLS (Tree Search): Iterative, Stack-Based

Algorithm 6 DLS-Tree(problem,L) (explicit Actions and Transition)
1: frontier ← stack containing Make-Node(problem.initial,depth = 0)
2: cutoff ← false
3: while frontier ̸= ∅ do
4: node ← POP(frontier ) ▷ LIFO
5: if GOAL-TEST(node.state) then
6: return SOLUTION(node)
7: end if
8: if node.depth = L then
9: cutoff ← true ▷ hit the limit; do not expand

10: continue
11: end if
12: A← ACTIONS(problem,node.state)
13: for each a ∈ REVERSE(A) do ▷ reverse so leftmost is popped next
14: s ′ ← TRANSITION(node.state, a)
15: child ← Make-Node(s ′,node, a,depth = node.depth + 1)
16: PUSH(frontier , child )
17: end for
18: end while
19: return CUTOFF if cutoff else FAILURE

Tree-search version (no explored set). For graphs, add an explored set and skip repeated states.

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 29 / 33



Depth Limited Search

Depth-Limited Search: Properties

Guarantees
▶ Completeness:

▶ If a solution exists at depth ≤ L and
branching is finite: Yes.

▶ Otherwise: No (may return CUTOFF).
▶ Optimality: No in general (not by

shallowest or least-cost).

Complexity
▶ Time: O(bL)

▶ Space: O(bL) (like DFS, linear in
depth)

When to use
▶ You have a good bound on

solution depth.
▶ Memory is tight but pure DFS risks

going too deep.
▶ As the inner loop of Iterative

Deepening (L = 0, 1, 2, . . . ).

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 30 / 33



Iterative Deepening Search

Iterative Deepening DFS (IDS): A DFS/BFS Hybrid

▶ Performs DFS to depth limit L, then increases L = 0, 1, 2, . . .

▶ Completeness: Yes (like BFS) if step costs uniform and branching finite.
▶ Optimality: Yes for unit step costs (finds shallowest goal).
▶ Time: O(bd ); Space: O(bd) (like DFS).
▶ Why use it? BFS-like guarantees with DFS-like space.

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 31 / 33



Wrap-up

Uninformed Search: Summary Table

Algorithm Frontier (Data Structure) Complete? Optimal? Time Space
BFS FIFO queue Yesa Yesa O(bd+1) O(bd+1)

UCS Min-priority queue by g(n) Yesb Yes O
(
b 1+⌊C∗/ε⌋

)
same

DFS LIFO stack Noc No O(bm ) O(b m)

DLS (ℓ) Stack + depth limit ℓ No/Yesd No O
(
bmin(ℓ,m)

)
O
(
b min(ℓ,m)

)
IDS Repeated DLS for limits 0..d Yes Yesa O(bd ) O(b d)

Symbols: b = branching factor, d = depth of shallowest goal, m = max depth, C∗ = optimal solution cost, ε = minimum
step cost > 0.

a Assuming unit step costs. b Assuming all step costs ≥ ε > 0. c May fail on infinite-depth trees or cycles without
limits/explored set. d Complete if ℓ ≥ d (finite b).

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 32 / 33



Wrap-up

Day 2 Wrap-Up

▶ Uninformed algorithms: BFS, UCS, DFS, DLS, IDS.
▶ Tradeoffs in completeness, optimality, efficiency.
▶ Motivation: we need heuristics to go further.

Curtis Larsen (Utah Tech University) CS 4300 Fall 2025 33 / 33


	Uninformed Search: Day 2
	Breadth First Search
	Uniform-Cost Search
	Depth-First Search
	Depth Limited Search
	Iterative Deepening Search
	Wrap-up

