Computational Theory Summary

Curtis Larsen

Utah Tech University—Computing

Fall 2025

Alphabets, Strings, and Languages

- ▶ An alphabet is a finite set of symbols: Σ .
- ▶ A string, w, is sequence of symbols from Σ .
- ▶ The infinite set of all possible strings is Σ^* .
- ▶ A string $w \in \Sigma^*$, has finite length.
- ▶ A language is a subset of possible strings. $L \subseteq \Sigma^*$.
- ▶ A language may be finite or infinite. However $L \cup \overline{L} = \Sigma^*$ and is infinite.
- ▶ A string is either in a language, $w \in L$, or not in a language, $w \notin L$ OR $w \in \overline{L}$.

Problems and Computability

whether or not a string is a member of a language. $w \in L$?

Computable problems can be defined in terms of determining

- ▶ A computing machine defines a process for determining " $w \in L$?".
- ▶ A generator defines a process to generate all $w \in L$.
- ► Languages are classified based on the computing machine structures needed to compute the membership of a string, or the generator structures needed to generate the members of a language.

Machines and Generators

- Deterministic Finite Automaton
 - $\mathsf{DFA} = (Q, \Sigma, \delta : Q \times \Sigma \to Q, q_0 \in Q, F \subseteq Q)$
- Nondeterministic Finite Automaton NFA = $(Q, \Sigma, \delta: Q \times \Sigma_{\varepsilon} \to \mathcal{P}(Q), q_0 \in Q, F \subseteq Q)$
- Regular Expression
- Context-free Grammar CFG = (V, Σ, R, S)
- Pushdown Automaton

$$\mathsf{PDA} = (Q, \Sigma, \Gamma, \delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \to \mathcal{P}(Q \times \Gamma_{\varepsilon}), q_{0} \in Q, F \subseteq Q)$$

Machines and Generators

Turing Machine (Deterministic)

$$\mathsf{TM} = (Q, \Sigma, \Gamma, \delta, q_0 \in Q, q_{accept} \in Q, q_{reject} \in Q)$$

$$\delta : Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$$

Nondeterministic Turing Machine NTM = $(Q, \Sigma, \Gamma, \delta, q_0 \in Q, q_{accept} \in Q, q_{reject} \in Q)$

$$\delta: Q \times \Gamma \to \mathcal{P}(Q \times \Gamma \times \{L, R\})$$

Multitape Turing Machines

$$\mathsf{MTTM} = (Q, \Sigma, \Gamma, \delta, q_0 \in Q, q_{accept} \in Q, q_{reject} \in Q)$$

$$\delta : Q \times \Gamma^k \to Q \times \Gamma^k \times \{L, R, S\}^k$$

- Descriptions:
 - Formal
 - Implementation
 - High Level

Language Classes

- ▶ Not Turing-recognizable
- Turing-recognizable
- co-Turing-recognizable
- Not co-Turing-recognizable
- Decidable (Turing-decidable)
- Context-free
- Regular

Justify Existence?

- ▶ Not Turing-recognizable
- Turing-recognizable
- co-Turing-recognizable
- Not co-Turing-recognizable
- Decidable (Turing-decidable)
- Context-free
- Regular

Prove?

- Not Turing-recognizable
- Turing-recognizable
- co-Turing-recognizable
- Not co-Turing-recognizable
- Decidable (Turing-decidable)
- Context-free
- Regular

Prove Not?

- ▶ Not Turing-recognizable
- Turing-recognizable
- co-Turing-recognizable
- Not co-Turing-recognizable
- Decidable (Turing-decidable)
- Context-free
- Regular

Complexity Classes

- ightharpoonup TIME(t(n))
- $P = \bigcup_k \mathsf{TIME}(n^k)$
- ightharpoonup NTIME(t(n))
- NP = languages with polynomial time verifiers.
- $\qquad \mathsf{NP} = \bigcup_k \mathsf{NTIME}(n^k)$
- ▶ NP-HARD
- ▶ NP-COMPLETE

Complexity Class Proofs

- Prove membership in class.
- Prove not member of class.

You Did It!

Thanks for a great semester.