Countability

Reading: Sipser, "The Diagonalization Method," from just before Definition 4.12 up to Corollary 4.18, pages 202–207 (174–178 2^{nd} ed.).

Examples of Regular Languages

- $\{w \in \{a,b\}^* : |w| \text{ even & every 3rd symbol is an } a\}$
- $\{ w \in \{a, b\}^* : \text{There are not 7 } a \text{'s or 7 } b \text{'s in a row} \}$
- $\{w \in \{a,b\}^* : w \text{ has both an even number of } a$'s and an even number of b's $\}$
- \blacktriangleright {w:w is written using the ASCII character set and every substring delimited by spaces, punctuation marks, or the beginning or end of the string is in the American Heritage Dictionary}

Questions about regular languages

Give X = a regular expression, DFA, or NFA, how could you tell if:

- ▶ $x \in L(X)$, where x is some string?
- $L(X) = \emptyset$?
- $\blacktriangleright x \in L(X)$ but $x \notin L(Y)$?
- L(X) = L(Y), where Y is another RE/FA?
- ► L(X) is infinite?
- ▶ There are infinitely many strings that belong to both L(X) and L(Y)?

Goal: Existence of Non-Regular Languages

Intuition:

- Every regular language can be described by a finite string (namely a regular expression).
- To specify an arbitrary language requires an infinite amount of information.
 - For example, an infinite sequence of bits would suffice.
 - Σ^* has a lexicographic ordering, and the i'th bit of an infinite sequence specifying a language would say whether or not the i'th string is in the language.
- ⇒ Some languages must not be regular.

How to formalize?

Countability

- ▶ A set S is **finite** if there is a bijection $\{1, ..., n\} \leftrightarrow S$ for some $n \ge 0$.
- **Countably infinite** if there is a bijection $f: \mathcal{N} \leftrightarrow S$

This means that S can be "enumerated," i.e. listed as $\{s_0, s_1, s_2, \ldots\}$ where $s_i = f(i)$ for $i = 0, 1, 2, 3, \ldots$

So $\mathcal N$ itself is countably infinite

So is \mathcal{Z} (integers) since $\mathcal{Z} = \{0, -1, 1, -2, 2, \ldots\}$

Q: What is f?

- Countable if S is finite or countably infinite
- Uncountable if it is not countable

Facts about Infinite Sets

Proposition: The union of 2 countably infinite sets is countably infinite.

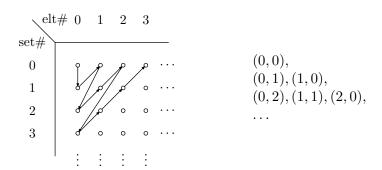
If
$$A=\{a_0,a_1,\ldots\},\ B=\{b_0,b_1,\ldots\}$$
 The $A\cup B=C=\{c_0,c_1,\ldots\}$ where $c_i=\begin{cases}a_{i/2}&\text{if }i\text{ is even}\\b_{(i-1)/2}&\text{if }i\text{ is odd}\end{cases}$

Q: If we are being fussy, there is a small problem with this argument. What is it?

▶ **Proposition:** If there is a function $f : \mathcal{N} \to S$ that is onto S then S is countable.

Countable Unions of Countable Sets

▶ Proposition: The union of countably many countably infinite sets is countably infinite



Each element is "reached" eventually in this ordering

Q: What is the bijection $\mathcal{N} \leftrightarrow \mathcal{N} \times \mathcal{N}$?

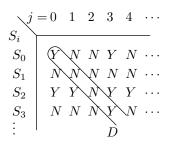
Are there uncountable sets? (Infinite but not countably infinite)

Theorem: $\mathcal{P}(\mathcal{N})$ is uncountable (The set of all sets of natural numbers)

Proof by contradiction: (i.e. assume that $\mathcal{P}(\mathcal{N})$ is countable and show that this results in a contradiction)

- ▶ Suppose that $\mathcal{P}(\mathcal{N})$ were countable.
- ▶ There there is an enumeration of all subsets of \mathcal{N} say $\mathcal{P}(\mathcal{N}) = \{S_0, S_1, \ldots\}$

Diagonalization



"Y" in row i, column j means $j \in S_i$

- ▶ Let $D = \{i \in \mathcal{N} : i \in S_i\}$ be the diagonal
- $D = YNNY \dots = \{0, 3, \dots\}$
- ▶ Let $\overline{D} = \mathcal{N} D$ be its complement
- $ightharpoonup \overline{D} = NYYN \ldots = \{1, 2, \ldots\}$
- ▶ **Claim:** \overline{D} is omitted from the enumeration, contradicting the assumption that every set of natural numbers is one of the S_i s.

Pf: \overline{D} is different from each row; they differ at the diagonal.

Cardinality of Languages

- ▶ An alphabet Σ is finite by definition
- **Proposition:** Σ^* is countably infinite
- So every language is either finite or countably infinite
- $ightharpoonup \mathcal{P}(\Sigma^*)$ is uncountable, being the set of subsets of a countable infinite set.
 - i.e. There are uncountably many languages over any alphabet
 - **Q:** Even if $|\Sigma| = 1$?

Existence of Non-regular Languages

Theorem: For every alphabet Σ , there exists a non-regular language over Σ .

Proof:

- ▶ There are only countably many regular expressions over Σ .
 - \Rightarrow There are only countably many regular languages over Σ .
- ▶ There are uncountably many languages over Σ .
- ▶ Thus at least one language must be non-regular.
- ⇒ In fact, "almost all" languages must be non-regular.
 - Q: Could we do this proof using DFAs instead?
 - Q: Can we get our hands on an explicit non-regular language?