
A Second Look At Prolog 

Chapter Twenty Modern Programming Languages, 2nd ed. 1 



Outline 

 Unification 
 Three views of Prolog’s execution model 

–  Procedural 
–  Implementational 
–  Abstract 

 The lighter side of Prolog 

Chapter Twenty Modern Programming Languages, 2nd ed. 2 



Substitutions 

 A substitution is a function that maps 
variables to terms: 

 σ = {X→a, Y→f(a,b)}  
 This σ maps X to a and Y to f(a,b) 
 The result of applying a substitution to a 

term is an instance of the term 
   σ(g(X,Y)) = g(a,f(a,b)) so 
g(a,f(a,b)) is an instance of g(X,Y) 

Chapter Twenty Modern Programming Languages, 2nd ed. 3 



Unification 

  Two Prolog terms t1 and t2 unify if there is some 
substitution σ (their unifier) that makes them 
identical: σ(t1) = σ(t2) 
–  a and b do not unify 
–  f(X,b) and f(a,Y) unify: a unifier is {X→a, Y→b} 
–  f(X,b) and g(X,b) do not unify 
–  a(X,X,b) and a(b,X,X) unify: a unifier is {X→b} 
–  a(X,X,b) and a(c,X,X) do not unify 
–  a(X,f) and a(X,f) do unify: a unifier is {} 

Chapter Twenty Modern Programming Languages, 2nd ed. 4 



Multiple Unifiers 

 parent(X,Y) and parent(fred,Y): 
–  one unifier is σ1 = {X→fred}  
–  another is σ2 = {X→fred, Y→mary} 

  Prolog chooses unifiers like σ1 that do just 
enough substitution to unify, and no more 

 That is, it chooses the MGU—the Most 
General Unifier 

Chapter Twenty Modern Programming Languages, 2nd ed. 5 



MGU 

 Term x1 is more general than x2 if x2 is an 
instance of x1 but x1 is not an instance of x2 
–  Example: parent(fred,Y)  is more general 

than parent(fred,mary) 
 A unifier σ1 of two terms t1 and t2 is an 

MGU if there is no other unifier σ2 such 
that σ2(t1) is more general than σ1(t1) 

 MGU is unique up to variable renaming 

Chapter Twenty Modern Programming Languages, 2nd ed. 6 



Unification For Everything 

  Parameter passing 
–  reverse([1,2,3],X)  

 Binding  
–  X=0  

 Data construction 
–  X=.(1,[2,3]) 

 Data selection 
–  [1,2,3]=.(X,Y)   

Chapter Twenty Modern Programming Languages, 2nd ed. 7 



The Occurs Check 

 Any variable X and term t unify with {X→t}: 
–  X and b unify: an MGU is {X→b} 
–  X and f(a,g(b,c)) unify: an MGU is 

{X→f(a,g(b,c))} 
–  X and f(a,Y) unify: an MGU is {X→f(a,Y)} 

 Unless X occurs in t: 
–  X and f(a,X) do not unify, in particular not by 

{X→f(a,X)} 

Chapter Twenty Modern Programming Languages, 2nd ed. 8 



Occurs Check Example 

 Most Prologs omit the occurs check 
  ISO standard says the result of unification is 

undefined in cases that should fail the 
occurs check 

Chapter Twenty Modern Programming Languages, 2nd ed. 9 

append([], B, B). 
append([Head|TailA], B, 
[Head|TailC]) :- 
  append(TailA, B, TailC). 

?- append([], X, [a | X]). 
X = [a|**]. 



Outline 

 Unification 
 Three views of Prolog’s execution model 

–  Procedural 
–  Implementational 
–  Abstract 

 The lighter side of Prolog 

Chapter Twenty Modern Programming Languages, 2nd ed. 10 



A Procedural View 

 One way to think of it: each clause is a 
procedure for proving goals 
–  p :- q, r. – To prove a goal, first unify 

the goal with p, then prove q, then prove r 
–  s. – To prove a goal, unify it with s 

 A proof may involve “calls” to other 
procedures 

Chapter Twenty Modern Programming Languages, 2nd ed. 11 



Simple Procedural Examples 

Chapter Twenty Modern Programming Languages, 2nd ed. 12 

p :- q, r. 
q :- s. 
r :- s. 
s. 

p :- p. boolean p() {return p();} 

boolean p() {return q() && r();} 
boolean q() {return s();} 
boolean r() {return s();} 
boolean s() {return true;} 



Backtracking 
 One complication: backtracking 
  Prolog explores all possible targets of each 

call, until it finds as many successes as the 
caller requires or runs out of possibilities 

 Consider the goal p here: it succeeds, but 
only after backtracking 

Chapter Twenty Modern Programming Languages, 2nd ed. 13 

1.  p :- q, r. 
2.  q :- s. 
3.  q. 
4.  r. 
5.  s :- 0=1. 



Substitution 
 Another complication: substitution 
 A hidden flow of information 

Chapter Twenty Modern Programming Languages, 2nd ed. 14 

σ1 = MGU(p(f(Y)),t) is 
applied to all subsequent 
conditions in the clause 

σ2  = substitution developed by q 
to prove σ1(q(Y)), is applied to 
all subsequent conditions in the 
clause 

σ3 = substitution developed 
by r to prove σ2(σ1(r(Y))) 

combined substitution is 
returned to caller  

term proved: σ3(σ2(σ1(t))) 

original 
goal term t 

p(f(Y))  :-  q(Y)  ,  r(Y)   . 



Outline 

 Unification 
 Three views of Prolog’s execution model 

–  Procedural 
–  Implementational 
–  Abstract 

 The lighter side of Prolog 

Chapter Twenty Modern Programming Languages, 2nd ed. 15 



Resolution 

 The hardwired inference step 
 A clause is represented as a list of terms (a 

list of one term, if it is a fact) 
 Resolution step applies one clause, once, to 

make progress on a list of goal terms 

Chapter Twenty Modern Programming Languages, 2nd ed. 16 

function resolution(clause, goals): 
  let sub = the MGU of head(clause) and head(goals) 
  return sub(tail(clause) concatenated with tail(goals)) 



Resolution Example 

Chapter Twenty Modern Programming Languages, 2nd ed. 17 

function resolution(clause, goals): 
  let sub = the MGU of head(clause) and head(goals) 
  return sub(tail(clause) concatenated with tail(goals)) 

Given this list of goal terms: 
 [p(X),s(X)] 

And this rule to apply: 
 p(f(Y)) :- q(Y), r(Y). 

The MGU of the heads is {X→f(Y)}, and we get: 
  resolution([p(f(Y)),q(Y),r(Y)], [p(X),s(X)])  
  = [q(Y),r(Y),s(f(Y))]  



A Prolog Interpreter 

Chapter Twenty Modern Programming Languages, 2nd ed. 18 

function solve(goals) 
  if goals is empty then succeed() 
  else for each clause c in the program, in order 
    if head(c) does not unify with head(goals) then do nothing 
    else solve(resolution(c, goals)) 



 solve tries each of the four clauses in turn 
–  The first works, so it calls itself recursively on 

the result of the resolution step (not shown yet) 
–  The other three do not work: heads do not unify 

with the first goal term 

Chapter Twenty Modern Programming Languages, 2nd ed. 19 

Program: 

1.  p(f(Y)) :-  
       q(Y),r(Y). 
2.  q(g(Z)). 
3.  q(h(Z)). 
4.  r(h(a)). 

A partial trace for query p(X): 

solve([p(X)]) 
 1. solve([q(Y),r(Y)]) 
      … 
 2. nothing 
 3. nothing 
 4. nothing 



Chapter Twenty Modern Programming Languages, 2nd ed. 20 

Program: 

1.  p(f(Y)) :-  
       q(Y),r(Y). 
2.  q(g(Z)). 
3.  q(h(Z)). 
4.  r(h(a)). 

A partial trace for query p(X), expanded: 

solve([p(X)]) 
 1. solve([q(Y),r(Y)]) 
     1. nothing 
     2. solve([r(g(Z))]) 
          … 
     3. solve([r(h(Z))]) 
          … 
     4. nothing 
 2. nothing 
 3. nothing 
 4. nothing 



Chapter Twenty Modern Programming Languages, 2nd ed. 21 

Program: 

1.  p(f(Y)) :-  
       q(Y),r(Y). 
2.  q(g(Z)). 
3.  q(h(Z)). 
4.  r(h(a)). 

A complete trace for query p(X): 

solve([p(X)]) 
 1. solve([q(Y),r(Y)]) 
     1. nothing 
     2. solve([r(g(Z))]) 
         1. nothing 
         2. nothing 
         3. nothing 
         4. nothing 
     3. solve([r(h(Z))]) 
         1. nothing 
         2. nothing 
         3. nothing 
         4. solve([]) —
success! 
     4. nothing 
 2. nothing 
 3. nothing 
 4. nothing 



Collecting The Substitutions 

 Modified to pass original query along and 
apply all substitutions to it 

  Proved instance is passed to succeed 

Chapter Twenty Modern Programming Languages, 2nd ed. 22 

function resolution(clause, goals, query): 
  let sub = the MGU of head(clause) and head(goals) 
  return (sub(tail(clause) concatenated with tail(goals)), sub(query)) 

function solve(goals, query) 
  if goals is empty then succeed(query) 
  else for each clause c in the program, in order 
    if head(c) does not unify with head(goals) then do nothing 
    else solve(resolution(c, goals, query)) 



Chapter Twenty Modern Programming Languages, 2nd ed. 23 

Program: 

1.  p(f(Y)) :-  
       q(Y),r(Y). 
2.  q(g(Z)). 
3.  q(h(Z)). 
4.  r(h(a)). 

A complete trace for query p(X): 

solve([p(X)],p(X)) 
 1. solve([q(Y),r(Y)],p(f(Y))) 
     1. nothing 
     2. solve([r(g(Z))],p(f(g(Z)))) 
         1. nothing 
         2. nothing 
         3. nothing 
         4. nothing 
     3. solve([r(h(Z))],p(f(h(Z)))) 
         1. nothing 
         2. nothing 
         3. nothing 
         4. solve([],p(f(h(a)))) 
     4. nothing 
 2. nothing 
 3. nothing 
 4. nothing 



Prolog Interpreters 

 The interpreter just shown is how early 
Prolog implementations worked 

 All Prolog implementations must do things 
in that order, but most now accomplish it by 
a completely different (compiled) technique 

Chapter Twenty Modern Programming Languages, 2nd ed. 24 



Outline 

 Unification 
 Three views of Prolog’s execution model 

–  Procedural 
–  Implementational 
–  Abstract 

 The lighter side of Prolog 

Chapter Twenty Modern Programming Languages, 2nd ed. 25 



Proof Trees 

 We want to talk about the order of 
operations, without pinning down the 
implementation technique 

  Proof trees capture the order of traces of 
prove, without the code: 
–  Root is original query 
–  Nodes are lists of goal terms, with one child for 

each clause in the program 

Chapter Twenty Modern Programming Languages, 2nd ed. 26 



Example 

Chapter Twenty Modern Programming Languages, 2nd ed. 27 



Simplifying 

 Children of a node represent clauses  
 They appear in the order they occur in the 

program 
 Once this is understood, we can eliminate 

the nothing nodes, which represent clauses 
that do not apply to the first goal in the list 

Chapter Twenty Modern Programming Languages, 2nd ed. 28 



Example 

Chapter Twenty Modern Programming Languages, 2nd ed. 29 



Prolog Semantics 

 Given a program and a query, a Prolog 
language system must act in the order given 
by a depth-first, left-to-right traversal of the 
proof tree 

  It might accomplish that using an interpreter 
like our prove 

 Or it might do it by some completely 
different means 

Chapter Twenty Modern Programming Languages, 2nd ed. 30 



Infinite Proof Tree, 
Nonterminating Program 

Chapter Twenty Modern Programming Languages, 2nd ed. 31 

p :- p. 
p. 



Infinite Proof Tree,  
Terminating Program 

Chapter Twenty Modern Programming Languages, 2nd ed. 32 

p. 
p :- p. 



A Problem 

 All three of the models of Prolog execution 
we have seen are flawed 

 They work on the examples we chose 
 On other examples they would not agree 

with common sense, or with the actual 
behavior of a Prolog language system 

  For instance, reverse([1,2],X) 

Chapter Twenty Modern Programming Languages, 2nd ed. 33 



A Problem 

Chapter Twenty Modern Programming Languages, 2nd ed. 34 

reverse([],[]). 
reverse([Head|Tail],X) :- 
  reverse(Tail,Y), 
  append(Y,[Head],X). 



The Error 

Chapter Twenty Modern Programming Languages, 2nd ed. 35 

reverse([],[]). 
reverse([Head|Tail],X) :- 
  reverse(Tail,Y), 
  append(Y,[Head],X). 

This step is wrong: we 
substituted X for Y, 
but there is already a 
different X elsewhere 
in the goal list. 



Variable Renaming 
 To avoid capture, use fresh variable names 

for each clause, every time you apply it 
 The first application of reverse might be: 

 And the next might be: 

 And so on… 
Chapter Twenty Modern Programming Languages, 2nd ed. 36 

reverse([Head1|Tail1],X1) :-  
  reverse(Tail1,Y1), 
  append(Y1,[Head1],X1). 

reverse([Head2|Tail2],X2) :-  
  reverse(Tail2,Y2), 
  append(Y2,[Head2],X2). 



Correct 

Chapter Twenty Modern Programming Languages, 2nd ed. 37 

reverse([],[]). 
reverse([Head|Tail],X) :- 
  reverse(Tail,Y), 
  append(Y,[Head],X). 



Rename Everywhere 

 This renaming step is required for all three 
of our models of Prolog execution 

 Every time a clause is used, it must have a 
fresh set of variable names 

 This implements clause scope as required: 
the scope of a definition of a variable is the 
clause containing it 

Chapter Twenty Modern Programming Languages, 2nd ed. 38 



Outline 

 Unification 
 Three views of Prolog’s execution model 

–  Procedural 
–  Implementational 
–  Abstract 

 The lighter side of Prolog 

Chapter Twenty Modern Programming Languages, 2nd ed. 39 



Quoted Atoms As Strings 

 Any string of characters enclosed in single 
quotes is a term 

  In fact, Prolog treats it as an atom: 
–  'abc' is the same atom as abc 
–  'hello world' and 'Hello world' are 

atoms too 
 Quoted strings can use \n, \t, \', \\ 

Chapter Twenty Modern Programming Languages, 2nd ed. 40 



Input and Output 

  Simple term input and output. 
 Also the predicate nl: equivalent to 
write('\n') 

Chapter Twenty Modern Programming Languages, 2nd ed. 41 

?- write('Hello world'). 
Hello world 
true. 

?- read(X). 
|: hello. 
X = hello.  



Debugging With write 

Chapter Twenty Modern Programming Languages, 2nd ed. 42 

p :-  
  append(X,Y,[1,2]), 
  write(X), write(' '), write(Y), write('\n'), 
  X=Y. 

?- p. 
[] [1, 2] 
[1] [2] 
[1, 2] [] 
false. 



The assert Predicate 

 Adds a fact to the database (at the end) 

Chapter Twenty Modern Programming Languages, 2nd ed. 43 

?- parent(joe,mary). 
false. 

?- assert(parent(joe,mary)). 
true. 

?- parent(joe,mary). 
true. 



The retract Predicate 

 Removes the first clause in the database that 
unifies with the parameter 

 Also retractall to remove all matches 

Chapter Twenty Modern Programming Languages, 2nd ed. 44 

?- parent(joe,mary). 
true. 

?- retract(parent(joe,mary)). 
true. 

?- parent(joe,mary). 
false. 



Dangerous Curves Ahead 

  A very dirty trick: self-modifying code 
  Not safe, not declarative, not efficient—but can be 

tempting, as the final example shows 
  Best to use them only for facts, only for predicates 

not otherwise defined by the program, and only 
where the clause order is not important 

  Note: if a predicate was compiled by consult, 
SWI-Prolog will not permit its definition to be 
changed by assert or retract 

Chapter Twenty Modern Programming Languages, 2nd ed. 45 



The Cut 

 Written !, pronounced “cut” 
 Logically simple: a goal that always 

succeeds (sort of like true) 
  Procedurally tricky: when it succeeds, it 

usually also eliminates some backtracking 
 We’ll use it in only one simple way: as the 

final condition in a rule 

Chapter Twenty Modern Programming Languages, 2nd ed. 46 



What Cut Does There 

  If q1 through qj succeed, the cut does too 
  It tells Prolog there’s no going back: 

–  No backtracking to look for other solutions for 
q1 through qj 

–  And, no backtracking to try other clauses for 
the goal p that succeeded this way 

  In effect: the first solution found for a given 
goal using this rule will be the last solution 
found for that goal 

Chapter Twenty Modern Programming Languages, 2nd ed. 47 

p :- q1, q2, …, qj, !. 



Chapter Twenty Modern Programming Languages, 2nd ed. 48 

p :- member(X,[a,b,c]), write(X). 
p :- write(d). 

?- p. 
a 
true ;  
b 
true ; 
c 
true ; 
d 
true. 

No Cut, Normal Backtracking 



Chapter Twenty Modern Programming Languages, 2nd ed. 49 

p :- member(X,[a,b,c]), write(X), !. 
p :- write(d). 

?- p. 
a 
true. 

Cut Discards Backtracking 

 Because of the cut, it stops after finding the 
first solution 



Cut With Care 
 Uses of cut are non-declarative, and can be 

extremely subtle and error prone 
–  Some cuts improve efficiency, saving time and 

space on backtracking where you know there 
are no more solutions anyway (“green cuts”)  

–  Others (like the previous example) change the 
solutions that are found (“red cuts”) 

 Useful and sometimes necessary, but use 
with caution 

Chapter Twenty Modern Programming Languages, 2nd ed. 50 



An Adventure Game 

  Prolog comments 
–  /* to */, like Java 
–  Also, % to end of line 

Chapter Twenty Modern Programming Languages, 2nd ed. 51 

/* 
  This is a little adventure game.  There are three 
  entities: you, a treasure, and an ogre.  There are  
  six places: a valley, a path, a cliff, a fork, a maze,  
  and a mountaintop.  Your goal is to get the treasure 
  without being killed first. 
*/ 



Chapter Twenty Modern Programming Languages, 2nd ed. 52 

/* 
  First, text descriptions of all the places in  
  the game. 
*/ 
description(valley, 
  'You are in a pleasant valley, with a trail ahead.'). 
description(path, 
  'You are on a path, with ravines on both sides.'). 
description(cliff, 
  'You are teetering on the edge of a cliff.'). 
description(fork, 
  'You are at a fork in the path.'). 
description(maze(_), 
  'You are in a maze of twisty trails, all alike.'). 
description(mountaintop, 
  'You are on the mountaintop.'). 



Chapter Twenty Modern Programming Languages, 2nd ed. 53 

/* 
  report prints the description of your current 
  location. 
*/ 
report :- 
  at(you,X), 
  description(X,Y), 
  write(Y), nl. 



Chapter Twenty Modern Programming Languages, 2nd ed. 54 

?- assert(at(you,cliff)). 
true. 

?- report. 
You are teetering on the edge of a cliff. 
true. 

?- retract(at(you,cliff)). 
true. 

?- assert(at(you,valley)). 
true. 

?- report. 
You are in a pleasant valley, with a trail ahead. 
true. 



Chapter Twenty Modern Programming Languages, 2nd ed. 55 

/* 
  These connect predicates establish the map. 
  The meaning of connect(X,Dir,Y) is that if you 
  are at X and you move in direction Dir, you 
  get to Y.  Recognized directions are 
  forward, right and left. 
*/ 
connect(valley,forward,path). 
connect(path,right,cliff). 
connect(path,left,cliff). 
connect(path,forward,fork). 
connect(fork,left,maze(0)). 
connect(fork,right,mountaintop). 
connect(maze(0),left,maze(1)). 
connect(maze(0),right,maze(3)). 
connect(maze(1),left,maze(0)). 
connect(maze(1),right,maze(2)). 
connect(maze(2),left,fork). 
connect(maze(2),right,maze(0)). 
connect(maze(3),left,maze(0)). 
connect(maze(3),right,maze(3)). 



Chapter Twenty Modern Programming Languages, 2nd ed. 56 

/* 
  move(Dir) moves you in direction Dir, then 
  prints the description of your new location. 
*/ 
move(Dir) :- 
  at(you,Loc), 
  connect(Loc,Dir,Next), 
  retract(at(you,Loc)), 
  assert(at(you,Next)), 
  report, 
  !. 
/* 
  But if the argument was not a legal direction, 
  print an error message and don't move. 
*/ 
move(_) :- 
  write('That is not a legal move.\n'), 
  report. 

Note the final cut: the second clause 
for move will be used only if the first 
one fails, which happens only if Dir 
was not a legal move. 



Chapter Twenty Modern Programming Languages, 2nd ed. 57 

/* 
  Shorthand for moves. 
*/ 
forward :- move(forward). 
left :- move(left). 
right :- move(right). 



Chapter Twenty Modern Programming Languages, 2nd ed. 58 

?- assert(at(you,valley)). 
true. 

?- forward. 
You are on a path, with ravines on both sides. 
true. 

?- forward. 
You are at a fork in the path. 
true. 

?- forward. 
That is not a legal move. 
You are at a fork in the path. 
true. 



Chapter Twenty Modern Programming Languages, 2nd ed. 59 

/* 
  If you and the ogre are at the same place, it  
  kills you. 
*/ 
ogre :- 
  at(ogre,Loc), 
  at(you,Loc), 
  write('An ogre sucks your brain out through\n'), 
  write('your eyesockets, and you die.\n'), 
  retract(at(you,Loc)), 
  assert(at(you,done)), 
  !. 
/* 
  But if you and the ogre are not in the same place, 
  nothing happens. 
*/ 
ogre. 

Note again the final cut in the first clause, 
producing an “otherwise” behavior: ogre 
always succeeds, by killing you if it can, or 
otherwise by doing nothing. 



Chapter Twenty Modern Programming Languages, 2nd ed. 60 

/* 
  If you and the treasure are at the same place, you 
  win. 
*/ 
treasure :- 
  at(treasure,Loc), 
  at(you,Loc), 
  write('There is a treasure here.\n'), 
  write('Congratulations, you win!\n'), 
  retract(at(you,Loc)), 
  assert(at(you,done)), 
  !. 
/* 
  But if you and the treasure are not in the same 
  place, nothing happens. 
*/ 
treasure. 



Chapter Twenty Modern Programming Languages, 2nd ed. 61 

/* 
  If you are at the cliff, you fall off and die. 
*/ 
cliff :- 
  at(you,cliff), 
  write('You fall off and die.\n'), 
  retract(at(you,cliff)), 
  assert(at(you,done)), 
  !. 
/* 
  But if you are not at the cliff nothing happens. 
*/ 
cliff. 



Chapter Twenty Modern Programming Languages, 2nd ed. 62 

/* 
  Main loop.  Stop if player won or lost. 
*/ 
main :-  
  at(you,done), 
  write('Thanks for playing.\n’), 
  !. 
/* 
  Main loop.  Not done, so get a move from the user 
  and make it.  Then run all our special behaviors.   
  Then repeat. 
*/ 
main :- 
  write('\nNext move -- '), 
  read(Move), 
  call(Move), 
  ogre, 
  treasure, 
  cliff, 
  main. 

The predefined predicate call(X) 
tries to prove X as a goal term. 



Chapter Twenty Modern Programming Languages, 2nd ed. 63 

/* 
  This is the starting point for the game.  We 
  assert the initial conditions, print an initial 
  report, then start the main loop. 
*/ 
go :- 
  retractall(at(_,_)), % clean up from previous runs 
  assert(at(you,valley)), 
  assert(at(ogre,maze(3))), 
  assert(at(treasure,mountaintop)), 
  write('This is an adventure game. \n'), 
  write('Legal moves are left, right or forward.\n'), 
  write('End each move with a period.\n\n'), 
  report, 
  main. 



Chapter Twenty Modern Programming Languages, 2nd ed. 64 

?- go. 
This is an adventure game.  
Legal moves are left, right or forward. 
End each move with a period. 

You are in a pleasant valley, with a trail ahead. 

Next move -- forward. 
You are on a path, with ravines on both sides. 

Next move -- forward. 
You are at a fork in the path. 

Next move -- right. 
You are on the mountaintop. 
There is a treasure here. 
Congratulations, you win! 
Thanks for playing. 
true. 


