
A Second Look At Prolog 

Chapter Twenty Modern Programming Languages, 2nd ed. 1 



Outline 

 Unification 
 Three views of Prolog’s execution model 

–  Procedural 
–  Implementational 
–  Abstract 

 The lighter side of Prolog 

Chapter Twenty Modern Programming Languages, 2nd ed. 2 



Substitutions 

 A substitution is a function that maps 
variables to terms: 

 σ = {X→a, Y→f(a,b)}  
 This σ maps X to a and Y to f(a,b) 
 The result of applying a substitution to a 

term is an instance of the term 
   σ(g(X,Y)) = g(a,f(a,b)) so 
g(a,f(a,b)) is an instance of g(X,Y) 
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Unification 

  Two Prolog terms t1 and t2 unify if there is some 
substitution σ (their unifier) that makes them 
identical: σ(t1) = σ(t2) 
–  a and b do not unify 
–  f(X,b) and f(a,Y) unify: a unifier is {X→a, Y→b} 
–  f(X,b) and g(X,b) do not unify 
–  a(X,X,b) and a(b,X,X) unify: a unifier is {X→b} 
–  a(X,X,b) and a(c,X,X) do not unify 
–  a(X,f) and a(X,f) do unify: a unifier is {} 

Chapter Twenty Modern Programming Languages, 2nd ed. 4 



Multiple Unifiers 

 parent(X,Y) and parent(fred,Y): 
–  one unifier is σ1 = {X→fred}  
–  another is σ2 = {X→fred, Y→mary} 

  Prolog chooses unifiers like σ1 that do just 
enough substitution to unify, and no more 

 That is, it chooses the MGU—the Most 
General Unifier 
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MGU 

 Term x1 is more general than x2 if x2 is an 
instance of x1 but x1 is not an instance of x2 
–  Example: parent(fred,Y)  is more general 

than parent(fred,mary) 
 A unifier σ1 of two terms t1 and t2 is an 

MGU if there is no other unifier σ2 such 
that σ2(t1) is more general than σ1(t1) 

 MGU is unique up to variable renaming 
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Unification For Everything 

  Parameter passing 
–  reverse([1,2,3],X)  

 Binding  
–  X=0  

 Data construction 
–  X=.(1,[2,3]) 

 Data selection 
–  [1,2,3]=.(X,Y)   
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The Occurs Check 

 Any variable X and term t unify with {X→t}: 
–  X and b unify: an MGU is {X→b} 
–  X and f(a,g(b,c)) unify: an MGU is 

{X→f(a,g(b,c))} 
–  X and f(a,Y) unify: an MGU is {X→f(a,Y)} 

 Unless X occurs in t: 
–  X and f(a,X) do not unify, in particular not by 

{X→f(a,X)} 
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Occurs Check Example 

 Most Prologs omit the occurs check 
  ISO standard says the result of unification is 

undefined in cases that should fail the 
occurs check 
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append([], B, B). 
append([Head|TailA], B, 
[Head|TailC]) :- 
  append(TailA, B, TailC). 

?- append([], X, [a | X]). 
X = [a|**]. 



Outline 

 Unification 
 Three views of Prolog’s execution model 

–  Procedural 
–  Implementational 
–  Abstract 

 The lighter side of Prolog 
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A Procedural View 

 One way to think of it: each clause is a 
procedure for proving goals 
–  p :- q, r. – To prove a goal, first unify 

the goal with p, then prove q, then prove r 
–  s. – To prove a goal, unify it with s 

 A proof may involve “calls” to other 
procedures 
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Simple Procedural Examples 
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p :- q, r. 
q :- s. 
r :- s. 
s. 

p :- p. boolean p() {return p();} 

boolean p() {return q() && r();} 
boolean q() {return s();} 
boolean r() {return s();} 
boolean s() {return true;} 



Backtracking 
 One complication: backtracking 
  Prolog explores all possible targets of each 

call, until it finds as many successes as the 
caller requires or runs out of possibilities 

 Consider the goal p here: it succeeds, but 
only after backtracking 
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1.  p :- q, r. 
2.  q :- s. 
3.  q. 
4.  r. 
5.  s :- 0=1. 



Substitution 
 Another complication: substitution 
 A hidden flow of information 
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σ1 = MGU(p(f(Y)),t) is 
applied to all subsequent 
conditions in the clause 

σ2  = substitution developed by q 
to prove σ1(q(Y)), is applied to 
all subsequent conditions in the 
clause 

σ3 = substitution developed 
by r to prove σ2(σ1(r(Y))) 

combined substitution is 
returned to caller  

term proved: σ3(σ2(σ1(t))) 

original 
goal term t 

p(f(Y))  :-  q(Y)  ,  r(Y)   . 
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 Three views of Prolog’s execution model 

–  Procedural 
–  Implementational 
–  Abstract 
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Resolution 

 The hardwired inference step 
 A clause is represented as a list of terms (a 

list of one term, if it is a fact) 
 Resolution step applies one clause, once, to 

make progress on a list of goal terms 
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function resolution(clause, goals): 
  let sub = the MGU of head(clause) and head(goals) 
  return sub(tail(clause) concatenated with tail(goals)) 



Resolution Example 
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function resolution(clause, goals): 
  let sub = the MGU of head(clause) and head(goals) 
  return sub(tail(clause) concatenated with tail(goals)) 

Given this list of goal terms: 
 [p(X),s(X)] 

And this rule to apply: 
 p(f(Y)) :- q(Y), r(Y). 

The MGU of the heads is {X→f(Y)}, and we get: 
  resolution([p(f(Y)),q(Y),r(Y)], [p(X),s(X)])  
  = [q(Y),r(Y),s(f(Y))]  



A Prolog Interpreter 
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function solve(goals) 
  if goals is empty then succeed() 
  else for each clause c in the program, in order 
    if head(c) does not unify with head(goals) then do nothing 
    else solve(resolution(c, goals)) 



 solve tries each of the four clauses in turn 
–  The first works, so it calls itself recursively on 

the result of the resolution step (not shown yet) 
–  The other three do not work: heads do not unify 

with the first goal term 
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Program: 

1.  p(f(Y)) :-  
       q(Y),r(Y). 
2.  q(g(Z)). 
3.  q(h(Z)). 
4.  r(h(a)). 

A partial trace for query p(X): 

solve([p(X)]) 
 1. solve([q(Y),r(Y)]) 
      … 
 2. nothing 
 3. nothing 
 4. nothing 
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Program: 

1.  p(f(Y)) :-  
       q(Y),r(Y). 
2.  q(g(Z)). 
3.  q(h(Z)). 
4.  r(h(a)). 

A partial trace for query p(X), expanded: 

solve([p(X)]) 
 1. solve([q(Y),r(Y)]) 
     1. nothing 
     2. solve([r(g(Z))]) 
          … 
     3. solve([r(h(Z))]) 
          … 
     4. nothing 
 2. nothing 
 3. nothing 
 4. nothing 
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Program: 

1.  p(f(Y)) :-  
       q(Y),r(Y). 
2.  q(g(Z)). 
3.  q(h(Z)). 
4.  r(h(a)). 

A complete trace for query p(X): 

solve([p(X)]) 
 1. solve([q(Y),r(Y)]) 
     1. nothing 
     2. solve([r(g(Z))]) 
         1. nothing 
         2. nothing 
         3. nothing 
         4. nothing 
     3. solve([r(h(Z))]) 
         1. nothing 
         2. nothing 
         3. nothing 
         4. solve([]) —
success! 
     4. nothing 
 2. nothing 
 3. nothing 
 4. nothing 



Collecting The Substitutions 

 Modified to pass original query along and 
apply all substitutions to it 

  Proved instance is passed to succeed 
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function resolution(clause, goals, query): 
  let sub = the MGU of head(clause) and head(goals) 
  return (sub(tail(clause) concatenated with tail(goals)), sub(query)) 

function solve(goals, query) 
  if goals is empty then succeed(query) 
  else for each clause c in the program, in order 
    if head(c) does not unify with head(goals) then do nothing 
    else solve(resolution(c, goals, query)) 
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Program: 

1.  p(f(Y)) :-  
       q(Y),r(Y). 
2.  q(g(Z)). 
3.  q(h(Z)). 
4.  r(h(a)). 

A complete trace for query p(X): 

solve([p(X)],p(X)) 
 1. solve([q(Y),r(Y)],p(f(Y))) 
     1. nothing 
     2. solve([r(g(Z))],p(f(g(Z)))) 
         1. nothing 
         2. nothing 
         3. nothing 
         4. nothing 
     3. solve([r(h(Z))],p(f(h(Z)))) 
         1. nothing 
         2. nothing 
         3. nothing 
         4. solve([],p(f(h(a)))) 
     4. nothing 
 2. nothing 
 3. nothing 
 4. nothing 



Prolog Interpreters 

 The interpreter just shown is how early 
Prolog implementations worked 

 All Prolog implementations must do things 
in that order, but most now accomplish it by 
a completely different (compiled) technique 
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 Unification 
 Three views of Prolog’s execution model 

–  Procedural 
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–  Abstract 

 The lighter side of Prolog 
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Proof Trees 

 We want to talk about the order of 
operations, without pinning down the 
implementation technique 

  Proof trees capture the order of traces of 
prove, without the code: 
–  Root is original query 
–  Nodes are lists of goal terms, with one child for 

each clause in the program 
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Example 
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Simplifying 

 Children of a node represent clauses  
 They appear in the order they occur in the 

program 
 Once this is understood, we can eliminate 

the nothing nodes, which represent clauses 
that do not apply to the first goal in the list 
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Example 
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Prolog Semantics 

 Given a program and a query, a Prolog 
language system must act in the order given 
by a depth-first, left-to-right traversal of the 
proof tree 

  It might accomplish that using an interpreter 
like our prove 

 Or it might do it by some completely 
different means 
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Infinite Proof Tree, 
Nonterminating Program 
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p :- p. 
p. 



Infinite Proof Tree,  
Terminating Program 
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p. 
p :- p. 



A Problem 

 All three of the models of Prolog execution 
we have seen are flawed 

 They work on the examples we chose 
 On other examples they would not agree 

with common sense, or with the actual 
behavior of a Prolog language system 

  For instance, reverse([1,2],X) 
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A Problem 
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reverse([],[]). 
reverse([Head|Tail],X) :- 
  reverse(Tail,Y), 
  append(Y,[Head],X). 



The Error 
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reverse([],[]). 
reverse([Head|Tail],X) :- 
  reverse(Tail,Y), 
  append(Y,[Head],X). 

This step is wrong: we 
substituted X for Y, 
but there is already a 
different X elsewhere 
in the goal list. 



Variable Renaming 
 To avoid capture, use fresh variable names 

for each clause, every time you apply it 
 The first application of reverse might be: 

 And the next might be: 

 And so on… 
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reverse([Head1|Tail1],X1) :-  
  reverse(Tail1,Y1), 
  append(Y1,[Head1],X1). 

reverse([Head2|Tail2],X2) :-  
  reverse(Tail2,Y2), 
  append(Y2,[Head2],X2). 



Correct 
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reverse([],[]). 
reverse([Head|Tail],X) :- 
  reverse(Tail,Y), 
  append(Y,[Head],X). 



Rename Everywhere 

 This renaming step is required for all three 
of our models of Prolog execution 

 Every time a clause is used, it must have a 
fresh set of variable names 

 This implements clause scope as required: 
the scope of a definition of a variable is the 
clause containing it 
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Outline 

 Unification 
 Three views of Prolog’s execution model 

–  Procedural 
–  Implementational 
–  Abstract 

 The lighter side of Prolog 
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Quoted Atoms As Strings 

 Any string of characters enclosed in single 
quotes is a term 

  In fact, Prolog treats it as an atom: 
–  'abc' is the same atom as abc 
–  'hello world' and 'Hello world' are 

atoms too 
 Quoted strings can use \n, \t, \', \\ 
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Input and Output 

  Simple term input and output. 
 Also the predicate nl: equivalent to 
write('\n') 
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?- write('Hello world'). 
Hello world 
true. 

?- read(X). 
|: hello. 
X = hello.  



Debugging With write 
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p :-  
  append(X,Y,[1,2]), 
  write(X), write(' '), write(Y), write('\n'), 
  X=Y. 

?- p. 
[] [1, 2] 
[1] [2] 
[1, 2] [] 
false. 



The assert Predicate 

 Adds a fact to the database (at the end) 
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?- parent(joe,mary). 
false. 

?- assert(parent(joe,mary)). 
true. 

?- parent(joe,mary). 
true. 



The retract Predicate 

 Removes the first clause in the database that 
unifies with the parameter 

 Also retractall to remove all matches 
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?- parent(joe,mary). 
true. 

?- retract(parent(joe,mary)). 
true. 

?- parent(joe,mary). 
false. 



Dangerous Curves Ahead 

  A very dirty trick: self-modifying code 
  Not safe, not declarative, not efficient—but can be 

tempting, as the final example shows 
  Best to use them only for facts, only for predicates 

not otherwise defined by the program, and only 
where the clause order is not important 

  Note: if a predicate was compiled by consult, 
SWI-Prolog will not permit its definition to be 
changed by assert or retract 
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The Cut 

 Written !, pronounced “cut” 
 Logically simple: a goal that always 

succeeds (sort of like true) 
  Procedurally tricky: when it succeeds, it 

usually also eliminates some backtracking 
 We’ll use it in only one simple way: as the 

final condition in a rule 
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What Cut Does There 

  If q1 through qj succeed, the cut does too 
  It tells Prolog there’s no going back: 

–  No backtracking to look for other solutions for 
q1 through qj 

–  And, no backtracking to try other clauses for 
the goal p that succeeded this way 

  In effect: the first solution found for a given 
goal using this rule will be the last solution 
found for that goal 
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p :- q1, q2, …, qj, !. 
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p :- member(X,[a,b,c]), write(X). 
p :- write(d). 

?- p. 
a 
true ;  
b 
true ; 
c 
true ; 
d 
true. 

No Cut, Normal Backtracking 
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p :- member(X,[a,b,c]), write(X), !. 
p :- write(d). 

?- p. 
a 
true. 

Cut Discards Backtracking 

 Because of the cut, it stops after finding the 
first solution 



Cut With Care 
 Uses of cut are non-declarative, and can be 

extremely subtle and error prone 
–  Some cuts improve efficiency, saving time and 

space on backtracking where you know there 
are no more solutions anyway (“green cuts”)  

–  Others (like the previous example) change the 
solutions that are found (“red cuts”) 

 Useful and sometimes necessary, but use 
with caution 
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An Adventure Game 

  Prolog comments 
–  /* to */, like Java 
–  Also, % to end of line 
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/* 
  This is a little adventure game.  There are three 
  entities: you, a treasure, and an ogre.  There are  
  six places: a valley, a path, a cliff, a fork, a maze,  
  and a mountaintop.  Your goal is to get the treasure 
  without being killed first. 
*/ 



Chapter Twenty Modern Programming Languages, 2nd ed. 52 

/* 
  First, text descriptions of all the places in  
  the game. 
*/ 
description(valley, 
  'You are in a pleasant valley, with a trail ahead.'). 
description(path, 
  'You are on a path, with ravines on both sides.'). 
description(cliff, 
  'You are teetering on the edge of a cliff.'). 
description(fork, 
  'You are at a fork in the path.'). 
description(maze(_), 
  'You are in a maze of twisty trails, all alike.'). 
description(mountaintop, 
  'You are on the mountaintop.'). 
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/* 
  report prints the description of your current 
  location. 
*/ 
report :- 
  at(you,X), 
  description(X,Y), 
  write(Y), nl. 
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?- assert(at(you,cliff)). 
true. 

?- report. 
You are teetering on the edge of a cliff. 
true. 

?- retract(at(you,cliff)). 
true. 

?- assert(at(you,valley)). 
true. 

?- report. 
You are in a pleasant valley, with a trail ahead. 
true. 



Chapter Twenty Modern Programming Languages, 2nd ed. 55 

/* 
  These connect predicates establish the map. 
  The meaning of connect(X,Dir,Y) is that if you 
  are at X and you move in direction Dir, you 
  get to Y.  Recognized directions are 
  forward, right and left. 
*/ 
connect(valley,forward,path). 
connect(path,right,cliff). 
connect(path,left,cliff). 
connect(path,forward,fork). 
connect(fork,left,maze(0)). 
connect(fork,right,mountaintop). 
connect(maze(0),left,maze(1)). 
connect(maze(0),right,maze(3)). 
connect(maze(1),left,maze(0)). 
connect(maze(1),right,maze(2)). 
connect(maze(2),left,fork). 
connect(maze(2),right,maze(0)). 
connect(maze(3),left,maze(0)). 
connect(maze(3),right,maze(3)). 
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/* 
  move(Dir) moves you in direction Dir, then 
  prints the description of your new location. 
*/ 
move(Dir) :- 
  at(you,Loc), 
  connect(Loc,Dir,Next), 
  retract(at(you,Loc)), 
  assert(at(you,Next)), 
  report, 
  !. 
/* 
  But if the argument was not a legal direction, 
  print an error message and don't move. 
*/ 
move(_) :- 
  write('That is not a legal move.\n'), 
  report. 

Note the final cut: the second clause 
for move will be used only if the first 
one fails, which happens only if Dir 
was not a legal move. 
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/* 
  Shorthand for moves. 
*/ 
forward :- move(forward). 
left :- move(left). 
right :- move(right). 
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?- assert(at(you,valley)). 
true. 

?- forward. 
You are on a path, with ravines on both sides. 
true. 

?- forward. 
You are at a fork in the path. 
true. 

?- forward. 
That is not a legal move. 
You are at a fork in the path. 
true. 
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/* 
  If you and the ogre are at the same place, it  
  kills you. 
*/ 
ogre :- 
  at(ogre,Loc), 
  at(you,Loc), 
  write('An ogre sucks your brain out through\n'), 
  write('your eyesockets, and you die.\n'), 
  retract(at(you,Loc)), 
  assert(at(you,done)), 
  !. 
/* 
  But if you and the ogre are not in the same place, 
  nothing happens. 
*/ 
ogre. 

Note again the final cut in the first clause, 
producing an “otherwise” behavior: ogre 
always succeeds, by killing you if it can, or 
otherwise by doing nothing. 
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/* 
  If you and the treasure are at the same place, you 
  win. 
*/ 
treasure :- 
  at(treasure,Loc), 
  at(you,Loc), 
  write('There is a treasure here.\n'), 
  write('Congratulations, you win!\n'), 
  retract(at(you,Loc)), 
  assert(at(you,done)), 
  !. 
/* 
  But if you and the treasure are not in the same 
  place, nothing happens. 
*/ 
treasure. 
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/* 
  If you are at the cliff, you fall off and die. 
*/ 
cliff :- 
  at(you,cliff), 
  write('You fall off and die.\n'), 
  retract(at(you,cliff)), 
  assert(at(you,done)), 
  !. 
/* 
  But if you are not at the cliff nothing happens. 
*/ 
cliff. 
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/* 
  Main loop.  Stop if player won or lost. 
*/ 
main :-  
  at(you,done), 
  write('Thanks for playing.\n’), 
  !. 
/* 
  Main loop.  Not done, so get a move from the user 
  and make it.  Then run all our special behaviors.   
  Then repeat. 
*/ 
main :- 
  write('\nNext move -- '), 
  read(Move), 
  call(Move), 
  ogre, 
  treasure, 
  cliff, 
  main. 

The predefined predicate call(X) 
tries to prove X as a goal term. 
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/* 
  This is the starting point for the game.  We 
  assert the initial conditions, print an initial 
  report, then start the main loop. 
*/ 
go :- 
  retractall(at(_,_)), % clean up from previous runs 
  assert(at(you,valley)), 
  assert(at(ogre,maze(3))), 
  assert(at(treasure,mountaintop)), 
  write('This is an adventure game. \n'), 
  write('Legal moves are left, right or forward.\n'), 
  write('End each move with a period.\n\n'), 
  report, 
  main. 
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?- go. 
This is an adventure game.  
Legal moves are left, right or forward. 
End each move with a period. 

You are in a pleasant valley, with a trail ahead. 

Next move -- forward. 
You are on a path, with ravines on both sides. 

Next move -- forward. 
You are at a fork in the path. 

Next move -- right. 
You are on the mountaintop. 
There is a treasure here. 
Congratulations, you win! 
Thanks for playing. 
true. 


