
A First Look At Prolog

Chapter Nineteen Modern Programming Languages, 2nd ed. 1

Outline

  Terms
  Using a Prolog language system
  Rules
  The two faces of Prolog
  Operators
  Lists
  Negation and failure
  What Prolog is good for

Chapter Nineteen Modern Programming Languages, 2nd ed. 2

Terms

 Everything in Prolog is built from terms:
–  Prolog programs
–  The data manipulated by Prolog programs

 Three kinds of terms:
–  Constants: integers, real numbers, atoms
–  Variables
–  Compound terms

Chapter Nineteen Modern Programming Languages, 2nd ed. 3

Constants

  Integer constants: 123
 Real constants: 1.23
 Atoms:

–  A lowercase letter followed by any number of
additional letters, digits or underscores: fred

–  A sequence of non-alphanumeric characters:
*, ., =, @#$

–  Plus a few special atoms: []

Chapter Nineteen Modern Programming Languages, 2nd ed. 4

Atoms Are Not Variables

 An atom can look like an ML or Java
variable:
–  i, size, length

 But an atom is not a variable; it is not bound
to anything, never equal to anything else

 Think of atoms as being more like string
constants: "i", "size", "length"

Chapter Nineteen Modern Programming Languages, 2nd ed. 5

Variables

 Any name beginning with an uppercase
letter or an underscore, followed by any
number of additional letters, digits or
underscores: X, Child, Fred, _, _123

 Most of the variables you write will start
with an uppercase letter

 Those starting with an underscore, including
_, get special treatment

Chapter Nineteen Modern Programming Languages, 2nd ed. 6

Compound Terms

 An atom followed by a parenthesized,
comma-separated list of one or more terms:
x(y,z), +(1,2), .(1,[]),
parent(adam,seth), x(Y,x(Y,Z))

 A compound term can look like an ML
function call: f(x,y)

 Again, this is misleading
 Think of them as structured data

Chapter Nineteen Modern Programming Languages, 2nd ed. 7

Terms

 All Prolog programs and data are built from
such terms

 Later, we will see that, for instance,
+(1,2) is usually written as 1+2

 But these are not new kinds of terms, just
abbreviations

Chapter Nineteen Modern Programming Languages, 2nd ed. 8

<term> ::= <constant> | <variable> | <compound-term>
<constant> ::= <integer> | <real number> | <atom>
<compound-term> ::= <atom> (<termlist>)
<termlist> ::= <term> | <term> , <termlist>

Unification

  Pattern-matching using Prolog terms
 Two terms unify if there is some way of

binding their variables that makes them
identical

  For instance, parent(adam,Child)
and parent(adam,seth) unify by
binding the variable Child to the atom
seth

 More details later: Chapter 20
Chapter Nineteen Modern Programming Languages, 2nd ed. 9

The Prolog Database

 A Prolog language system maintains a
collection of facts and rules of inference

  It is like an internal database that changes as
the Prolog language system runs

 A Prolog program is just a set of data for
this database

 The simplest kind of thing in the database is
a fact: a term followed by a period

Chapter Nineteen Modern Programming Languages, 2nd ed. 10

Example

 A Prolog program of six facts
 Defining a predicate parent of arity 2
 We would naturally interpret these as facts

about families: Kim is the parent of Holly
and so on

Chapter Nineteen Modern Programming Languages, 2nd ed. 11

parent(kim,holly).
parent(margaret,kim).
parent(margaret,kent).
parent(esther,margaret).
parent(herbert,margaret).
parent(herbert,jean).

Outline

  Terms
  Using a Prolog language system
  Rules
  The two faces of Prolog
  Operators
  Lists
  Negation and failure
  What Prolog is good for

Chapter Nineteen Modern Programming Languages, 2nd ed. 12

SWI-Prolog

  Prompting for a query with ?-
 Normally interactive: get query, print result,

repeat

Chapter Nineteen Modern Programming Languages, 2nd ed. 13

Welcome to SWI-Prolog …

For help, use ?- help(Topic). or ?- apropos(Word).

?-

The consult Predicate

  Predefined predicate to read a program from
a file into the database

  File relations (or relations.pl)
contains our parent facts

Chapter Nineteen Modern Programming Languages, 2nd ed. 14

?- consult(relations).
% relations compiled 0.00 sec, 852 bytes
true.

?-

Simple Queries

 A query asks the language system to prove
something

  Some turn out to be true, some false
  (Some queries, like consult, are executed

only for their side-effects)

Chapter Nineteen Modern Programming Languages, 2nd ed. 15

?- parent(margaret,kent).
true.

?- parent(fred,pebbles).
false.

?-

Final Period

 Queries can take multiple lines
  If you forget the final period, Prolog

prompts for more input with |

Chapter Nineteen Modern Programming Languages, 2nd ed. 16

?- parent(margaret,kent)
| .
true.

?-

Queries With Variables

 Any term can appear as a query, including a
term with variables

 The Prolog system shows the bindings
necessary to prove the query

Chapter Nineteen Modern Programming Languages, 2nd ed. 17

?- parent(P,jean).
P = herbert.

?- parent(P,esther).
false.

Flexibility

 Normally, variables can appear in any or all
positions in a query:
–  parent(Parent,jean)
–  parent(esther,Child)
–  parent(Parent,Child)
–  parent(Person,Person)

Chapter Nineteen Modern Programming Languages, 2nd ed. 18

Multiple Solutions

 When the system finds a solution, it prints the
binding it found

  If it could continue to search for additional
solutions, it then prompts for input

 Hitting Enter makes it stop searching and print
the final period…

Chapter Nineteen Modern Programming Languages, 2nd ed. 19

?- parent(Parent,Child).
Parent = kim,
Child = holly .

Multiple Solutions
 … entering a

semicolon makes it
continue the search

 As often as you do
this, it will try to find
another solution

  In this case, there is
one for every fact in
the database

Chapter Nineteen Modern Programming Languages, 2nd ed. 20

?- parent(Parent,Child).
Parent = kim,
Child = holly ;
Parent = margaret,
Child = kim ;
Parent = margaret,
Child = kent ;
Parent = esther,
Child = margaret ;
Parent = herbert,
Child = margaret ;
Parent = herbert,
Child = jean.

Conjunctions

 A conjunctive query has a list of query
terms separated by commas

 The Prolog system tries prove them all
(using a single set of bindings)

Chapter Nineteen Modern Programming Languages, 2nd ed. 21

?- parent(margaret,X), parent(X,holly).
X = kim .

Chapter Nineteen Modern Programming Languages, 2nd ed. 22

?- parent(Parent,kim), parent(Grandparent,Parent).
Parent = margaret,
Grandparent = esther ;
Parent = margaret,
Grandparent = herbert ;
false.

?- parent(esther,Child),
| parent(Child,Grandchild),
| parent(Grandchild,GreatGrandchild).
Child = margaret,
Grandchild = kim,
GreatGrandchild = holly .

Outline

  Terms
  Using a Prolog language system
  Rules
  The two faces of Prolog
  Operators
  Lists
  Negation and failure
  What Prolog is good for

Chapter Nineteen Modern Programming Languages, 2nd ed. 23

The Need For Rules

  Previous example had a lengthy query for
great-grandchildren of Esther

  It would be nicer to query directly:
 greatgrandparent(esther,GGC)

 But we do not want to add separate facts of
that form to the database

 The relation should follow from the
parent relation already defined

Chapter Nineteen Modern Programming Languages, 2nd ed. 24

A Rule

 A rule says how to prove something: to
prove the head, prove the conditions

 To prove greatgrandparent(GGP,GGC), find
some GP and P for which you can prove
parent(GGP,GP), then parent(GP,P) and then
finally parent(P,GGC)

Chapter Nineteen Modern Programming Languages, 2nd ed. 25

greatgrandparent(GGP,GGC) :-
 parent(GGP,GP),
 parent(GP,P),
 parent(P,GGC). conditions

head

A Program With The Rule

 A program consists of a list of clauses
 A clause is either a fact or a rule, and ends

with a period

Chapter Nineteen Modern Programming Languages, 2nd ed. 26

parent(kim,holly).
parent(margaret,kim).
parent(margaret,kent).
parent(esther,margaret).
parent(herbert,margaret).
parent(herbert,jean).
greatgrandparent(GGP,GGC) :-
 parent(GGP,GP), parent(GP,P), parent(P,GGC).

Example

 This shows the initial query and final result
  Internally, there are intermediate goals:

–  The first goal is the initial query
–  The next is what remains to be proved after

transforming the first goal using one of the
clauses (in this case, the greatgrandparent rule)

–  And so on, until nothing remains to be proved
Chapter Nineteen Modern Programming Languages, 2nd ed. 27

?- greatgrandparent(esther,GreatGrandchild).
GreatGrandchild = holly .

Chapter Nineteen Modern Programming Languages, 2nd ed. 28

greatgrandparent(esther,GreatGrandchild)

1. parent(kim,holly).
2. parent(margaret,kim).
3. parent(margaret,kent).
4. parent(esther,margaret).
5. parent(herbert,margaret).
6. parent(herbert,jean).
7. greatgrandparent(GGP,GGC) :-
 parent(GGP,GP), parent(GP,P), parent(P,GGC).

parent(esther,GP), parent(GP,P), parent(P,GreatGrandchild)

parent(margaret,P), parent(P,GreatGrandchild)

parent(kim,GreatGrandchild)

Clause 7, binding GGP to esther and GGC to GreatGrandChild

Clause 4, binding GP to margaret

Clause 2, binding P to kim

Clause 1, binding GreatGrandchild to holly

We will see more
about Prolog’s model
of execution in
Chapter 20

Rules Using Other Rules

  Same relation, defined indirectly
 Note that both clauses use a variable P
 The scope of the definition of a variable is

the clause that contains it

Chapter Nineteen Modern Programming Languages, 2nd ed. 29

grandparent(GP,GC) :-
 parent(GP,P), parent(P,GC).

greatgrandparent(GGP,GGC) :-
 grandparent(GGP,P), parent(P,GGC).

Recursive Rules

 X is an ancestor of Y if:
–  Base case: X is a parent of Y
–  Recursive case: there is some Z such that Z is a

parent of Y, and X is an ancestor of Z
  Prolog tries rules in the order you give

them, so put base-case rules and facts first

Chapter Nineteen Modern Programming Languages, 2nd ed. 30

ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :-
 parent(Z,Y),
 ancestor(X,Z).

Chapter Nineteen Modern Programming Languages, 2nd ed. 31

?- ancestor(jean,jean).
false.

?- ancestor(kim,holly).
true .

?- ancestor(A,holly).
A = kim ;
A = margaret ;
A = esther ;
A = herbert ;
false.

Core Syntax Of Prolog

 You have seen the complete core syntax:

 There is not much more syntax for Prolog
than this: it is a very simple language

  Syntactically, that is!

Chapter Nineteen Modern Programming Languages, 2nd ed. 32

<clause> ::= <fact> | <rule>
<fact> ::= <term> .
<rule> ::= <term> :- <termlist> .
<termlist> ::= <term> | <term> , <termlist>

Outline

  Terms
  Using a Prolog language system
  Rules
  The two faces of Prolog
  Operators
  Lists
  Negation and failure
  What Prolog is good for

Chapter Nineteen Modern Programming Languages, 2nd ed. 33

The Procedural Side

 A rule says how to prove something:
–  To prove greatgrandparent(GGP,GGC), find some
GP and P for which you can prove
parent(GGP,GP), then parent(GP,P) and then
finally parent(P,GGC)

 A Prolog program specifies proof
procedures for queries

Chapter Nineteen Modern Programming Languages, 2nd ed. 34

greatgrandparent(GGP,GGC) :-
 parent(GGP,GP), parent(GP,P), parent(P,GGC).

The Declarative Side

 A rule is a logical assertion:
–  For all bindings of GGP, GP, P, and GGC, if
parent(GGP,GP) and parent(GP,P) and
parent(P,GGC), then greatgrandparent(GGP,GGC)

  Just a formula – it doesn’t say how to do
anything – it just makes an assertion:

Chapter Nineteen Modern Programming Languages, 2nd ed. 35

Declarative Languages

 Each piece of the program corresponds to a
simple mathematical abstraction
–  Prolog clauses – formulas in first-order logic
–  ML fun definitions – functions

 Many people use declarative as the opposite
of imperative, including both logic
languages and functional languages

Chapter Nineteen Modern Programming Languages, 2nd ed. 36

Declarative Advantages

  Imperative languages are doomed to subtle
side-effects and interdependencies

  Simpler declarative semantics makes it
easier to develop and maintain correct
programs

 Higher-level, more like automatic
programming: describe the problem and
have the computer write the program

Chapter Nineteen Modern Programming Languages, 2nd ed. 37

Prolog Has Both Aspects

  Partly declarative
–  A Prolog program has logical content

  Partly procedural
–  A Prolog program has procedural concerns:

clause ordering, condition ordering, side-
effecting predicates, etc.

  It is important to be aware of both

Chapter Nineteen Modern Programming Languages, 2nd ed. 38

Outline

  Terms
  Using a Prolog language system
  Rules
  The two faces of Prolog
  Operators
  Lists
  Negation and failure
  What Prolog is good for

Chapter Nineteen Modern Programming Languages, 2nd ed. 39

Operators

  Prolog has some predefined operators (and
the ability to define new ones)

 An operator is just a predicate for which a
special abbreviated syntax is supported

Chapter Nineteen Modern Programming Languages, 2nd ed. 40

The = Predicate
 The goal =(X,Y) succeeds if and only if X

and Y can be unified:

  Since = is an operator, it can be and usually
is written like this:

Chapter Nineteen Modern Programming Languages, 2nd ed. 41

?- =(parent(adam,seth),parent(adam,X)).
X = seth.

?- parent(adam,seth)=parent(adam,X).
X = seth.

Arithmetic Operators

  Predicates +, -, * and / are operators too,
with the usual precedence and associativity

Chapter Nineteen Modern Programming Languages, 2nd ed. 42

?- X = +(1,*(2,3)).
X = 1+2*3.

?- X = 1+2*3.
X = 1+2*3.

Prolog lets you use operator
notation, and prints it out that
way, but the underlying term
is still +(1,*(2,3))

Not Evaluated

 The term is still +(1,*(2,3))
  It is not evaluated
 There is a way to make Prolog evaluate

such terms, but we won’t need it yet

Chapter Nineteen Modern Programming Languages, 2nd ed. 43

?- +(X,Y) = 1+2*3.
X = 1,
Y = 2*3.

?- 7 = 1+2*3.
false.

Outline

  Terms
  Using a Prolog language system
  Rules
  The two faces of Prolog
  Operators
  Lists
  Negation and failure
  What Prolog is good for

Chapter Nineteen Modern Programming Languages, 2nd ed. 44

Lists in Prolog

 A bit like ML lists
 The atom [] represents the empty list
 A predicate . corresponds to ML’s ::

operator

Chapter Nineteen Modern Programming Languages, 2nd ed. 45

ML expression Prolog term

[] []

1::[] .(1,[])

1::2::3::[] .(1,.(2,.(3,[])))

No equivalent. .(1,.(parent(X,Y),[]))

List Notation

 ML-style notation for lists
 These are just abbreviations for the

underlying term using the . Predicate
  Prolog usually displays lists in this notation

Chapter Nineteen Modern Programming Languages, 2nd ed. 46

List notation Term denoted
[] []
[1] .(1,[])
[1,2,3] .(1,.(2,.(3,[])))
[1,parent(X,Y)] .(1,.(parent(X,Y),[]))

Example

Chapter Nineteen Modern Programming Languages, 2nd ed. 47

?- X = .(1,.(2,.(3,[]))).
X = [1, 2, 3].

?- .(X,Y) = [1,2,3].
X = 1,
Y = [2, 3].

List Notation With Tail

 Last in a list can be the symbol | followed by
a final term for the tail of the list

 Useful in patterns: [1,2|X] unifies with any
list that starts with 1,2 and binds X to the tail

Chapter Nineteen Modern Programming Languages, 2nd ed. 48

List notation Term denoted
[1|X] .(1,X)
[1,2|X] .(1,.(2,X))
[1,2|[3,4]] same as [1,2,3,4]

?- [1,2|X] = [1,2,3,4,5].
X = [3, 4, 5].

The append Predicate

  Predefined append(X,Y,Z) succeeds if
and only if Z is the result of appending the
list Y onto the end of the list X

Chapter Nineteen Modern Programming Languages, 2nd ed. 49

?- append([1,2],[3,4],Z).
Z = [1, 2, 3, 4].

Not Just A Function

 append can be used with any pattern of
instantiation (that is, with variables in any
positions)

Chapter Nineteen Modern Programming Languages, 2nd ed. 50

?- append(X,[3,4],[1,2,3,4]).
X = [1, 2] .

Not Just A Function

Chapter Nineteen Modern Programming Languages, 2nd ed. 51

?- append(X,Y,[1,2,3]).
X = [],
Y = [1, 2, 3] ;
X = [1],
Y = [2, 3] ;
X = [1, 2],
Y = [3] ;
X = [1, 2, 3],
Y = [] ;
false.

An Implementation

Chapter Nineteen Modern Programming Languages, 2nd ed. 52

append([], B, B).
append([Head|TailA], B, [Head|TailC]) :-
 append(TailA, B, TailC).

Other Predefined List Predicates

 All flexible, like append
 Queries can contain variables anywhere

Chapter Nineteen Modern Programming Languages, 2nd ed. 53

Predicate Description

member(X,Y) Provable if the list Y contains the element X.

select(X,Y,Z) Provable if the list Y contains the element X, and Z is
the same as Y but with one instance of X removed.

nth0(X,Y,Z) Provable if X is an integer, Y is a list, and Z is the Xth
element of Y, counting from 0.

length(X,Y) Provable if X is a list of length Y.

Using select

Chapter Nineteen Modern Programming Languages, 2nd ed. 54

?- select(2,[1,2,3],Z).
Z = [1, 3] ;
false.

?- select(2,Y,[1,3]).
Y = [2, 1, 3] ;
Y = [1, 2, 3] ;
Y = [1, 3, 2] ;
false.

The reverse Predicate

  Predefined reverse(X,Y) unifies Y with
the reverse of the list X

Chapter Nineteen Modern Programming Languages, 2nd ed. 55

?- reverse([1,2,3,4],Y).
Y = [4, 3, 2, 1].

An Implementation

 Not an efficient way to reverse
 We’ll see why, and a more efficient

solution, in Chapter 21

Chapter Nineteen Modern Programming Languages, 2nd ed. 56

reverse([],[]).
reverse([Head|Tail],X) :-
 reverse(Tail,Y),
 append(Y,[Head],X).

Non-Terminating Queries

 Asking for another solution caused an
infinite loop

 Hit Control-C to stop it, then a for abort
 reverse cannot be used as flexibly as
append

Chapter Nineteen Modern Programming Languages, 2nd ed. 57

?- reverse(X,[1,2,3,4]).
X = [4, 3, 2, 1] ;

^CAction (h for help) ? abort
% Execution Aborted
?-

Flexible and Inflexible

  Ideally, predicates should all be flexible like
append

 They are more declarative, with fewer
procedural quirks to consider

 But inflexible implementations are
sometimes used, for efficiency or simplicity

 Another example is sort…

Chapter Nineteen Modern Programming Languages, 2nd ed. 58

Example

 A fully flexible sort would also be able to
unsort—find all permutations

 But it would not be as efficient for the more
common task

Chapter Nineteen Modern Programming Languages, 2nd ed. 59

?- sort([2,3,1,4],X).
X = [1, 2, 3, 4].

?- sort(X,[1,2,3,4]).
ERROR: Arguments are not sufficiently instantiated

The Anonymous Variable

 The variable _ is an anonymous variable
 Every occurrence is bound independently of

every other occurrence
  In effect, much like ML’s _: it matches any

term without introducing bindings

Chapter Nineteen Modern Programming Languages, 2nd ed. 60

Example

 This tailof(X,Y) succeeds when X is a
non-empty list and Y is the tail of that list

 Don’t use this, even though it works:

Chapter Nineteen Modern Programming Languages, 2nd ed. 61

tailof([_|A],A).

tailof([Head|A],A).

Dire Warning

 Don’t ignore warning message about
singleton variables

 As in ML, it is bad style to introduce a
variable you never use

 More importantly: if you misspell a variable
name, this is the only warning you will see

Chapter Nineteen Modern Programming Languages, 2nd ed. 62

append([], B, B).
append([Head|TailA], B, [Head|TailC]) :-
 append(TailA, B, Tailc).

Outline

  Terms
  Using a Prolog language system
  Rules
  The two faces of Prolog
  Operators
  Lists
  Negation and failure
  What Prolog is good for

Chapter Nineteen Modern Programming Languages, 2nd ed. 63

The not Predicate

  For simple applications, it often works quite
a bit logical negation

 But it has an important procedural side…

Chapter Nineteen Modern Programming Languages, 2nd ed. 64

?- member(1,[1,2,3]).
true .

?- not(member(4,[1,2,3])).
false.

Negation As Failure

 To prove not(X), Prolog attempts to
prove X

 not(X) succeeds if X fails
 The two faces again:

–  Declarative: not(X) = ¬X
–  Procedural: not(X) succeeds if X fails, fails if
X succeeds, and runs forever if X runs forever

Chapter Nineteen Modern Programming Languages, 2nd ed. 65

Example

Chapter Nineteen Modern Programming Languages, 2nd ed. 66

sibling(X,Y) :-
 parent(P,X),
 parent(P,Y),
 not(X=Y).

?- sibling(X,Y).
X = kim,
Y = kent ;
X = kent,
Y = kim ;
X = margaret,
Y = jean ;
X = jean,
Y = margaret ;
false.

sibling(X,Y) :-
 not(X=Y),
 parent(P,X),
 parent(P,Y).

?- sibling(kim,kent).
true .

?- sibling(kim,kim).
false.

?- sibling(X,Y).
false.

Outline

  Terms
  Using a Prolog language system
  Rules
  The two faces of Prolog
  Operators
  Lists
  Negation and failure
  What Prolog is good for

Chapter Nineteen Modern Programming Languages, 2nd ed. 67

A Classic Riddle

 A man travels with wolf, goat and cabbage
 Wants to cross a river from west to east
 A rowboat is available, but only large

enough for the man plus one possession
 Wolf eats goat if left alone together
 Goat eats cabbage if left alone together
 How can the man cross without loss?

Chapter Nineteen Modern Programming Languages, 2nd ed. 68

Configurations

 Represent a configuration of this system as
a list showing which bank each thing is on
in this order: man, wolf, goat, cabbage

  Initial configuration: [w,w,w,w]
  If man crosses with wolf, new state is
[e,e,w,w] – but then goat eats cabbage,
so we can’t go through that state

 Desired final state: [e,e,e,e]

Chapter Nineteen Modern Programming Languages, 2nd ed. 69

Moves

  In each move, man crosses with at most one
of his possessions

 We will represent these four moves with
four atoms: wolf, goat, cabbage,
nothing

  (Here, nothing indicates that the man
crosses alone in the boat)

Chapter Nineteen Modern Programming Languages, 2nd ed. 70

Moves Transform Configurations

 Each move transforms one configuration to
another

  In Prolog, we will write this as a predicate:
move(Config,Move,NextConfig)
–  Config is a configuration (like [w,w,w,w])
–  Move is a move (like wolf)
–  NextConfig is the resulting configuration (in

this case, [e,e,w,w])

Chapter Nineteen Modern Programming Languages, 2nd ed. 71

The move Predicate

Chapter Nineteen Modern Programming Languages, 2nd ed. 72

change(e,w).
change(w,e).

move([X,X,Goat,Cabbage],wolf,[Y,Y,Goat,Cabbage]) :-
 change(X,Y).
move([X,Wolf,X,Cabbage],goat,[Y,Wolf,Y,Cabbage]) :-
 change(X,Y).
move([X,Wolf,Goat,X],cabbage,[Y,Wolf,Goat,Y]) :-
 change(X,Y).
move([X,Wolf,Goat,C],nothing,[Y,Wolf,Goat,C]) :-
 change(X,Y).

Safe Configurations
 A configuration is safe if

–  At least one of the goat or the wolf is on the
same side as the man, and

–  At least one of the goat or the cabbage is on the
same side as the man

Chapter Nineteen Modern Programming Languages, 2nd ed. 73

oneEq(X,X,_).
oneEq(X,_,X).

safe([Man,Wolf,Goat,Cabbage]) :-
 oneEq(Man,Goat,Wolf),
 oneEq(Man,Goat,Cabbage).

Solutions

 A solution is a starting configuration and a
list of moves that takes you to
[e,e,e,e], where all the intermediate
configurations are safe

Chapter Nineteen Modern Programming Languages, 2nd ed. 74

solution([e,e,e,e],[]).
solution(Config,[Move|Rest]) :-
 move(Config,Move,NextConfig),
 safe(NextConfig),
 solution(NextConfig,Rest).

Prolog Finds A Solution

  Note: without the length(X,7) restriction,
Prolog would not find a solution

  It gets lost looking at possible solutions like
[goat,goat,goat,goat,goat…]

  More about this in Chapter 20

Chapter Nineteen Modern Programming Languages, 2nd ed. 75

?- length(X,7), solution([w,w,w,w],X).
X = [goat, nothing, wolf, goat, cabbage, nothing, goat] .

What Prolog Is Good For

 The program specified a problem logically
  It did not say how to search for a solution to

the problem – Prolog took it from there
 That’s one kind of problem Prolog is

especially good for
 More examples to come in Chapter 22

Chapter Nineteen Modern Programming Languages, 2nd ed. 76

