
A First Look At Prolog

Chapter Nineteen Modern Programming Languages, 2nd ed. 1

Outline

  Terms
  Using a Prolog language system
  Rules
  The two faces of Prolog
  Operators
  Lists
  Negation and failure
  What Prolog is good for

Chapter Nineteen Modern Programming Languages, 2nd ed. 2

Terms

 Everything in Prolog is built from terms:
–  Prolog programs
–  The data manipulated by Prolog programs

 Three kinds of terms:
–  Constants: integers, real numbers, atoms
–  Variables
–  Compound terms

Chapter Nineteen Modern Programming Languages, 2nd ed. 3

Constants

  Integer constants: 123
 Real constants: 1.23
 Atoms:

–  A lowercase letter followed by any number of
additional letters, digits or underscores: fred

–  A sequence of non-alphanumeric characters:
*, ., =, @#$

–  Plus a few special atoms: []

Chapter Nineteen Modern Programming Languages, 2nd ed. 4

Atoms Are Not Variables

 An atom can look like an ML or Java
variable:
–  i, size, length

 But an atom is not a variable; it is not bound
to anything, never equal to anything else

 Think of atoms as being more like string
constants: "i", "size", "length"

Chapter Nineteen Modern Programming Languages, 2nd ed. 5

Variables

 Any name beginning with an uppercase
letter or an underscore, followed by any
number of additional letters, digits or
underscores: X, Child, Fred, _, _123

 Most of the variables you write will start
with an uppercase letter

 Those starting with an underscore, including
_, get special treatment

Chapter Nineteen Modern Programming Languages, 2nd ed. 6

Compound Terms

 An atom followed by a parenthesized,
comma-separated list of one or more terms:
x(y,z), +(1,2), .(1,[]),
parent(adam,seth), x(Y,x(Y,Z))

 A compound term can look like an ML
function call: f(x,y)

 Again, this is misleading
 Think of them as structured data

Chapter Nineteen Modern Programming Languages, 2nd ed. 7

Terms

 All Prolog programs and data are built from
such terms

 Later, we will see that, for instance,
+(1,2) is usually written as 1+2

 But these are not new kinds of terms, just
abbreviations

Chapter Nineteen Modern Programming Languages, 2nd ed. 8

<term> ::= <constant> | <variable> | <compound-term>
<constant> ::= <integer> | <real number> | <atom>
<compound-term> ::= <atom> (<termlist>)
<termlist> ::= <term> | <term> , <termlist>

Unification

  Pattern-matching using Prolog terms
 Two terms unify if there is some way of

binding their variables that makes them
identical

  For instance, parent(adam,Child)
and parent(adam,seth) unify by
binding the variable Child to the atom
seth

 More details later: Chapter 20
Chapter Nineteen Modern Programming Languages, 2nd ed. 9

The Prolog Database

 A Prolog language system maintains a
collection of facts and rules of inference

  It is like an internal database that changes as
the Prolog language system runs

 A Prolog program is just a set of data for
this database

 The simplest kind of thing in the database is
a fact: a term followed by a period

Chapter Nineteen Modern Programming Languages, 2nd ed. 10

Example

 A Prolog program of six facts
 Defining a predicate parent of arity 2
 We would naturally interpret these as facts

about families: Kim is the parent of Holly
and so on

Chapter Nineteen Modern Programming Languages, 2nd ed. 11

parent(kim,holly).
parent(margaret,kim).
parent(margaret,kent).
parent(esther,margaret).
parent(herbert,margaret).
parent(herbert,jean).

Outline

  Terms
  Using a Prolog language system
  Rules
  The two faces of Prolog
  Operators
  Lists
  Negation and failure
  What Prolog is good for

Chapter Nineteen Modern Programming Languages, 2nd ed. 12

SWI-Prolog

  Prompting for a query with ?-
 Normally interactive: get query, print result,

repeat

Chapter Nineteen Modern Programming Languages, 2nd ed. 13

Welcome to SWI-Prolog …

For help, use ?- help(Topic). or ?- apropos(Word).

?-

The consult Predicate

  Predefined predicate to read a program from
a file into the database

  File relations (or relations.pl)
contains our parent facts

Chapter Nineteen Modern Programming Languages, 2nd ed. 14

?- consult(relations).
% relations compiled 0.00 sec, 852 bytes
true.

?-

Simple Queries

 A query asks the language system to prove
something

  Some turn out to be true, some false
  (Some queries, like consult, are executed

only for their side-effects)

Chapter Nineteen Modern Programming Languages, 2nd ed. 15

?- parent(margaret,kent).
true.

?- parent(fred,pebbles).
false.

?-

Final Period

 Queries can take multiple lines
  If you forget the final period, Prolog

prompts for more input with |

Chapter Nineteen Modern Programming Languages, 2nd ed. 16

?- parent(margaret,kent)
| .
true.

?-

Queries With Variables

 Any term can appear as a query, including a
term with variables

 The Prolog system shows the bindings
necessary to prove the query

Chapter Nineteen Modern Programming Languages, 2nd ed. 17

?- parent(P,jean).
P = herbert.

?- parent(P,esther).
false.

Flexibility

 Normally, variables can appear in any or all
positions in a query:
–  parent(Parent,jean)
–  parent(esther,Child)
–  parent(Parent,Child)
–  parent(Person,Person)

Chapter Nineteen Modern Programming Languages, 2nd ed. 18

Multiple Solutions

 When the system finds a solution, it prints the
binding it found

  If it could continue to search for additional
solutions, it then prompts for input

 Hitting Enter makes it stop searching and print
the final period…

Chapter Nineteen Modern Programming Languages, 2nd ed. 19

?- parent(Parent,Child).
Parent = kim,
Child = holly .

Multiple Solutions
 … entering a

semicolon makes it
continue the search

 As often as you do
this, it will try to find
another solution

  In this case, there is
one for every fact in
the database

Chapter Nineteen Modern Programming Languages, 2nd ed. 20

?- parent(Parent,Child).
Parent = kim,
Child = holly ;
Parent = margaret,
Child = kim ;
Parent = margaret,
Child = kent ;
Parent = esther,
Child = margaret ;
Parent = herbert,
Child = margaret ;
Parent = herbert,
Child = jean.

Conjunctions

 A conjunctive query has a list of query
terms separated by commas

 The Prolog system tries prove them all
(using a single set of bindings)

Chapter Nineteen Modern Programming Languages, 2nd ed. 21

?- parent(margaret,X), parent(X,holly).
X = kim .

Chapter Nineteen Modern Programming Languages, 2nd ed. 22

?- parent(Parent,kim), parent(Grandparent,Parent).
Parent = margaret,
Grandparent = esther ;
Parent = margaret,
Grandparent = herbert ;
false.

?- parent(esther,Child),
| parent(Child,Grandchild),
| parent(Grandchild,GreatGrandchild).
Child = margaret,
Grandchild = kim,
GreatGrandchild = holly .

Outline

  Terms
  Using a Prolog language system
  Rules
  The two faces of Prolog
  Operators
  Lists
  Negation and failure
  What Prolog is good for

Chapter Nineteen Modern Programming Languages, 2nd ed. 23

The Need For Rules

  Previous example had a lengthy query for
great-grandchildren of Esther

  It would be nicer to query directly:
 greatgrandparent(esther,GGC)

 But we do not want to add separate facts of
that form to the database

 The relation should follow from the
parent relation already defined

Chapter Nineteen Modern Programming Languages, 2nd ed. 24

A Rule

 A rule says how to prove something: to
prove the head, prove the conditions

 To prove greatgrandparent(GGP,GGC), find
some GP and P for which you can prove
parent(GGP,GP), then parent(GP,P) and then
finally parent(P,GGC)

Chapter Nineteen Modern Programming Languages, 2nd ed. 25

greatgrandparent(GGP,GGC) :-
 parent(GGP,GP),
 parent(GP,P),
 parent(P,GGC). conditions

head

A Program With The Rule

 A program consists of a list of clauses
 A clause is either a fact or a rule, and ends

with a period

Chapter Nineteen Modern Programming Languages, 2nd ed. 26

parent(kim,holly).
parent(margaret,kim).
parent(margaret,kent).
parent(esther,margaret).
parent(herbert,margaret).
parent(herbert,jean).
greatgrandparent(GGP,GGC) :-
 parent(GGP,GP), parent(GP,P), parent(P,GGC).

Example

 This shows the initial query and final result
  Internally, there are intermediate goals:

–  The first goal is the initial query
–  The next is what remains to be proved after

transforming the first goal using one of the
clauses (in this case, the greatgrandparent rule)

–  And so on, until nothing remains to be proved
Chapter Nineteen Modern Programming Languages, 2nd ed. 27

?- greatgrandparent(esther,GreatGrandchild).
GreatGrandchild = holly .

Chapter Nineteen Modern Programming Languages, 2nd ed. 28

greatgrandparent(esther,GreatGrandchild)

1. parent(kim,holly).
2. parent(margaret,kim).
3. parent(margaret,kent).
4. parent(esther,margaret).
5. parent(herbert,margaret).
6. parent(herbert,jean).
7. greatgrandparent(GGP,GGC) :-
 parent(GGP,GP), parent(GP,P), parent(P,GGC).

parent(esther,GP), parent(GP,P), parent(P,GreatGrandchild)

parent(margaret,P), parent(P,GreatGrandchild)

parent(kim,GreatGrandchild)

Clause 7, binding GGP to esther and GGC to GreatGrandChild

Clause 4, binding GP to margaret

Clause 2, binding P to kim

Clause 1, binding GreatGrandchild to holly

We will see more
about Prolog’s model
of execution in
Chapter 20

Rules Using Other Rules

  Same relation, defined indirectly
 Note that both clauses use a variable P
 The scope of the definition of a variable is

the clause that contains it

Chapter Nineteen Modern Programming Languages, 2nd ed. 29

grandparent(GP,GC) :-
 parent(GP,P), parent(P,GC).

greatgrandparent(GGP,GGC) :-
 grandparent(GGP,P), parent(P,GGC).

Recursive Rules

 X is an ancestor of Y if:
–  Base case: X is a parent of Y
–  Recursive case: there is some Z such that Z is a

parent of Y, and X is an ancestor of Z
  Prolog tries rules in the order you give

them, so put base-case rules and facts first

Chapter Nineteen Modern Programming Languages, 2nd ed. 30

ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :-
 parent(Z,Y),
 ancestor(X,Z).

Chapter Nineteen Modern Programming Languages, 2nd ed. 31

?- ancestor(jean,jean).
false.

?- ancestor(kim,holly).
true .

?- ancestor(A,holly).
A = kim ;
A = margaret ;
A = esther ;
A = herbert ;
false.

Core Syntax Of Prolog

 You have seen the complete core syntax:

 There is not much more syntax for Prolog
than this: it is a very simple language

  Syntactically, that is!

Chapter Nineteen Modern Programming Languages, 2nd ed. 32

<clause> ::= <fact> | <rule>
<fact> ::= <term> .
<rule> ::= <term> :- <termlist> .
<termlist> ::= <term> | <term> , <termlist>

Outline

  Terms
  Using a Prolog language system
  Rules
  The two faces of Prolog
  Operators
  Lists
  Negation and failure
  What Prolog is good for

Chapter Nineteen Modern Programming Languages, 2nd ed. 33

The Procedural Side

 A rule says how to prove something:
–  To prove greatgrandparent(GGP,GGC), find some
GP and P for which you can prove
parent(GGP,GP), then parent(GP,P) and then
finally parent(P,GGC)

 A Prolog program specifies proof
procedures for queries

Chapter Nineteen Modern Programming Languages, 2nd ed. 34

greatgrandparent(GGP,GGC) :-
 parent(GGP,GP), parent(GP,P), parent(P,GGC).

The Declarative Side

 A rule is a logical assertion:
–  For all bindings of GGP, GP, P, and GGC, if
parent(GGP,GP) and parent(GP,P) and
parent(P,GGC), then greatgrandparent(GGP,GGC)

  Just a formula – it doesn’t say how to do
anything – it just makes an assertion:

Chapter Nineteen Modern Programming Languages, 2nd ed. 35

Declarative Languages

 Each piece of the program corresponds to a
simple mathematical abstraction
–  Prolog clauses – formulas in first-order logic
–  ML fun definitions – functions

 Many people use declarative as the opposite
of imperative, including both logic
languages and functional languages

Chapter Nineteen Modern Programming Languages, 2nd ed. 36

Declarative Advantages

  Imperative languages are doomed to subtle
side-effects and interdependencies

  Simpler declarative semantics makes it
easier to develop and maintain correct
programs

 Higher-level, more like automatic
programming: describe the problem and
have the computer write the program

Chapter Nineteen Modern Programming Languages, 2nd ed. 37

Prolog Has Both Aspects

  Partly declarative
–  A Prolog program has logical content

  Partly procedural
–  A Prolog program has procedural concerns:

clause ordering, condition ordering, side-
effecting predicates, etc.

  It is important to be aware of both

Chapter Nineteen Modern Programming Languages, 2nd ed. 38

Outline

  Terms
  Using a Prolog language system
  Rules
  The two faces of Prolog
  Operators
  Lists
  Negation and failure
  What Prolog is good for

Chapter Nineteen Modern Programming Languages, 2nd ed. 39

Operators

  Prolog has some predefined operators (and
the ability to define new ones)

 An operator is just a predicate for which a
special abbreviated syntax is supported

Chapter Nineteen Modern Programming Languages, 2nd ed. 40

The = Predicate
 The goal =(X,Y) succeeds if and only if X

and Y can be unified:

  Since = is an operator, it can be and usually
is written like this:

Chapter Nineteen Modern Programming Languages, 2nd ed. 41

?- =(parent(adam,seth),parent(adam,X)).
X = seth.

?- parent(adam,seth)=parent(adam,X).
X = seth.

Arithmetic Operators

  Predicates +, -, * and / are operators too,
with the usual precedence and associativity

Chapter Nineteen Modern Programming Languages, 2nd ed. 42

?- X = +(1,*(2,3)).
X = 1+2*3.

?- X = 1+2*3.
X = 1+2*3.

Prolog lets you use operator
notation, and prints it out that
way, but the underlying term
is still +(1,*(2,3))

Not Evaluated

 The term is still +(1,*(2,3))
  It is not evaluated
 There is a way to make Prolog evaluate

such terms, but we won’t need it yet

Chapter Nineteen Modern Programming Languages, 2nd ed. 43

?- +(X,Y) = 1+2*3.
X = 1,
Y = 2*3.

?- 7 = 1+2*3.
false.

Outline

  Terms
  Using a Prolog language system
  Rules
  The two faces of Prolog
  Operators
  Lists
  Negation and failure
  What Prolog is good for

Chapter Nineteen Modern Programming Languages, 2nd ed. 44

Lists in Prolog

 A bit like ML lists
 The atom [] represents the empty list
 A predicate . corresponds to ML’s ::

operator

Chapter Nineteen Modern Programming Languages, 2nd ed. 45

ML expression Prolog term

[] []

1::[] .(1,[])

1::2::3::[] .(1,.(2,.(3,[])))

No equivalent. .(1,.(parent(X,Y),[]))

List Notation

 ML-style notation for lists
 These are just abbreviations for the

underlying term using the . Predicate
  Prolog usually displays lists in this notation

Chapter Nineteen Modern Programming Languages, 2nd ed. 46

List notation Term denoted
[] []
[1] .(1,[])
[1,2,3] .(1,.(2,.(3,[])))
[1,parent(X,Y)] .(1,.(parent(X,Y),[]))

Example

Chapter Nineteen Modern Programming Languages, 2nd ed. 47

?- X = .(1,.(2,.(3,[]))).
X = [1, 2, 3].

?- .(X,Y) = [1,2,3].
X = 1,
Y = [2, 3].

List Notation With Tail

 Last in a list can be the symbol | followed by
a final term for the tail of the list

 Useful in patterns: [1,2|X] unifies with any
list that starts with 1,2 and binds X to the tail

Chapter Nineteen Modern Programming Languages, 2nd ed. 48

List notation Term denoted
[1|X] .(1,X)
[1,2|X] .(1,.(2,X))
[1,2|[3,4]] same as [1,2,3,4]

?- [1,2|X] = [1,2,3,4,5].
X = [3, 4, 5].

The append Predicate

  Predefined append(X,Y,Z) succeeds if
and only if Z is the result of appending the
list Y onto the end of the list X

Chapter Nineteen Modern Programming Languages, 2nd ed. 49

?- append([1,2],[3,4],Z).
Z = [1, 2, 3, 4].

Not Just A Function

 append can be used with any pattern of
instantiation (that is, with variables in any
positions)

Chapter Nineteen Modern Programming Languages, 2nd ed. 50

?- append(X,[3,4],[1,2,3,4]).
X = [1, 2] .

Not Just A Function

Chapter Nineteen Modern Programming Languages, 2nd ed. 51

?- append(X,Y,[1,2,3]).
X = [],
Y = [1, 2, 3] ;
X = [1],
Y = [2, 3] ;
X = [1, 2],
Y = [3] ;
X = [1, 2, 3],
Y = [] ;
false.

An Implementation

Chapter Nineteen Modern Programming Languages, 2nd ed. 52

append([], B, B).
append([Head|TailA], B, [Head|TailC]) :-
 append(TailA, B, TailC).

Other Predefined List Predicates

 All flexible, like append
 Queries can contain variables anywhere

Chapter Nineteen Modern Programming Languages, 2nd ed. 53

Predicate Description

member(X,Y) Provable if the list Y contains the element X.

select(X,Y,Z) Provable if the list Y contains the element X, and Z is
the same as Y but with one instance of X removed.

nth0(X,Y,Z) Provable if X is an integer, Y is a list, and Z is the Xth
element of Y, counting from 0.

length(X,Y) Provable if X is a list of length Y.

Using select

Chapter Nineteen Modern Programming Languages, 2nd ed. 54

?- select(2,[1,2,3],Z).
Z = [1, 3] ;
false.

?- select(2,Y,[1,3]).
Y = [2, 1, 3] ;
Y = [1, 2, 3] ;
Y = [1, 3, 2] ;
false.

The reverse Predicate

  Predefined reverse(X,Y) unifies Y with
the reverse of the list X

Chapter Nineteen Modern Programming Languages, 2nd ed. 55

?- reverse([1,2,3,4],Y).
Y = [4, 3, 2, 1].

An Implementation

 Not an efficient way to reverse
 We’ll see why, and a more efficient

solution, in Chapter 21

Chapter Nineteen Modern Programming Languages, 2nd ed. 56

reverse([],[]).
reverse([Head|Tail],X) :-
 reverse(Tail,Y),
 append(Y,[Head],X).

Non-Terminating Queries

 Asking for another solution caused an
infinite loop

 Hit Control-C to stop it, then a for abort
 reverse cannot be used as flexibly as
append

Chapter Nineteen Modern Programming Languages, 2nd ed. 57

?- reverse(X,[1,2,3,4]).
X = [4, 3, 2, 1] ;

^CAction (h for help) ? abort
% Execution Aborted
?-

Flexible and Inflexible

  Ideally, predicates should all be flexible like
append

 They are more declarative, with fewer
procedural quirks to consider

 But inflexible implementations are
sometimes used, for efficiency or simplicity

 Another example is sort…

Chapter Nineteen Modern Programming Languages, 2nd ed. 58

Example

 A fully flexible sort would also be able to
unsort—find all permutations

 But it would not be as efficient for the more
common task

Chapter Nineteen Modern Programming Languages, 2nd ed. 59

?- sort([2,3,1,4],X).
X = [1, 2, 3, 4].

?- sort(X,[1,2,3,4]).
ERROR: Arguments are not sufficiently instantiated

The Anonymous Variable

 The variable _ is an anonymous variable
 Every occurrence is bound independently of

every other occurrence
  In effect, much like ML’s _: it matches any

term without introducing bindings

Chapter Nineteen Modern Programming Languages, 2nd ed. 60

Example

 This tailof(X,Y) succeeds when X is a
non-empty list and Y is the tail of that list

 Don’t use this, even though it works:

Chapter Nineteen Modern Programming Languages, 2nd ed. 61

tailof([_|A],A).

tailof([Head|A],A).

Dire Warning

 Don’t ignore warning message about
singleton variables

 As in ML, it is bad style to introduce a
variable you never use

 More importantly: if you misspell a variable
name, this is the only warning you will see

Chapter Nineteen Modern Programming Languages, 2nd ed. 62

append([], B, B).
append([Head|TailA], B, [Head|TailC]) :-
 append(TailA, B, Tailc).

Outline

  Terms
  Using a Prolog language system
  Rules
  The two faces of Prolog
  Operators
  Lists
  Negation and failure
  What Prolog is good for

Chapter Nineteen Modern Programming Languages, 2nd ed. 63

The not Predicate

  For simple applications, it often works quite
a bit logical negation

 But it has an important procedural side…

Chapter Nineteen Modern Programming Languages, 2nd ed. 64

?- member(1,[1,2,3]).
true .

?- not(member(4,[1,2,3])).
false.

Negation As Failure

 To prove not(X), Prolog attempts to
prove X

 not(X) succeeds if X fails
 The two faces again:

–  Declarative: not(X) = ¬X
–  Procedural: not(X) succeeds if X fails, fails if
X succeeds, and runs forever if X runs forever

Chapter Nineteen Modern Programming Languages, 2nd ed. 65

Example

Chapter Nineteen Modern Programming Languages, 2nd ed. 66

sibling(X,Y) :-
 parent(P,X),
 parent(P,Y),
 not(X=Y).

?- sibling(X,Y).
X = kim,
Y = kent ;
X = kent,
Y = kim ;
X = margaret,
Y = jean ;
X = jean,
Y = margaret ;
false.

sibling(X,Y) :-
 not(X=Y),
 parent(P,X),
 parent(P,Y).

?- sibling(kim,kent).
true .

?- sibling(kim,kim).
false.

?- sibling(X,Y).
false.

Outline

  Terms
  Using a Prolog language system
  Rules
  The two faces of Prolog
  Operators
  Lists
  Negation and failure
  What Prolog is good for

Chapter Nineteen Modern Programming Languages, 2nd ed. 67

A Classic Riddle

 A man travels with wolf, goat and cabbage
 Wants to cross a river from west to east
 A rowboat is available, but only large

enough for the man plus one possession
 Wolf eats goat if left alone together
 Goat eats cabbage if left alone together
 How can the man cross without loss?

Chapter Nineteen Modern Programming Languages, 2nd ed. 68

Configurations

 Represent a configuration of this system as
a list showing which bank each thing is on
in this order: man, wolf, goat, cabbage

  Initial configuration: [w,w,w,w]
  If man crosses with wolf, new state is
[e,e,w,w] – but then goat eats cabbage,
so we can’t go through that state

 Desired final state: [e,e,e,e]

Chapter Nineteen Modern Programming Languages, 2nd ed. 69

Moves

  In each move, man crosses with at most one
of his possessions

 We will represent these four moves with
four atoms: wolf, goat, cabbage,
nothing

  (Here, nothing indicates that the man
crosses alone in the boat)

Chapter Nineteen Modern Programming Languages, 2nd ed. 70

Moves Transform Configurations

 Each move transforms one configuration to
another

  In Prolog, we will write this as a predicate:
move(Config,Move,NextConfig)
–  Config is a configuration (like [w,w,w,w])
–  Move is a move (like wolf)
–  NextConfig is the resulting configuration (in

this case, [e,e,w,w])

Chapter Nineteen Modern Programming Languages, 2nd ed. 71

The move Predicate

Chapter Nineteen Modern Programming Languages, 2nd ed. 72

change(e,w).
change(w,e).

move([X,X,Goat,Cabbage],wolf,[Y,Y,Goat,Cabbage]) :-
 change(X,Y).
move([X,Wolf,X,Cabbage],goat,[Y,Wolf,Y,Cabbage]) :-
 change(X,Y).
move([X,Wolf,Goat,X],cabbage,[Y,Wolf,Goat,Y]) :-
 change(X,Y).
move([X,Wolf,Goat,C],nothing,[Y,Wolf,Goat,C]) :-
 change(X,Y).

Safe Configurations
 A configuration is safe if

–  At least one of the goat or the wolf is on the
same side as the man, and

–  At least one of the goat or the cabbage is on the
same side as the man

Chapter Nineteen Modern Programming Languages, 2nd ed. 73

oneEq(X,X,_).
oneEq(X,_,X).

safe([Man,Wolf,Goat,Cabbage]) :-
 oneEq(Man,Goat,Wolf),
 oneEq(Man,Goat,Cabbage).

Solutions

 A solution is a starting configuration and a
list of moves that takes you to
[e,e,e,e], where all the intermediate
configurations are safe

Chapter Nineteen Modern Programming Languages, 2nd ed. 74

solution([e,e,e,e],[]).
solution(Config,[Move|Rest]) :-
 move(Config,Move,NextConfig),
 safe(NextConfig),
 solution(NextConfig,Rest).

Prolog Finds A Solution

  Note: without the length(X,7) restriction,
Prolog would not find a solution

  It gets lost looking at possible solutions like
[goat,goat,goat,goat,goat…]

  More about this in Chapter 20

Chapter Nineteen Modern Programming Languages, 2nd ed. 75

?- length(X,7), solution([w,w,w,w],X).
X = [goat, nothing, wolf, goat, cabbage, nothing, goat] .

What Prolog Is Good For

 The program specified a problem logically
  It did not say how to search for a solution to

the problem – Prolog took it from there
 That’s one kind of problem Prolog is

especially good for
 More examples to come in Chapter 22

Chapter Nineteen Modern Programming Languages, 2nd ed. 76

