A First Look At Prolog

Chapter Nineteen Modern Programming Languages, 2nd ed.

Outline

Terms

Using a Prolog language system
Rules

The two faces of Prolog
Operators

Lists

Negation and failure

What Prolog 1s good for

Chapter Nineteen Modern Programming Languages, 2nd ed.

Terms

Everything in Prolog 1s built from terms:
Prolog programs
The data manipulated by Prolog programs
Three kinds of terms:
Constants: integers, real numbers, atoms
Variables

Compound terms

Chapter Nineteen Modern Programming Languages, 2nd ed.

Constants

Integer constants: 123
Real constants: 1 .23

Atoms:

A lowercase letter followed by any number of
additional letters, digits or underscores: fred

A sequence of non-alphanumeric characters:
*9 * =9 @#$

Plus a few special atoms: []

Chapter Nineteen Modern Programming Languages, 2nd ed.

Atoms Are Not Variables

An atom can look like an ML or Java
variable:

1, size, length

But an atom 1s not a variable; 1t 1s not bound
to anything, never equal to anything else

Think of atoms as being more like string
constants: "1", "size", "length"

Chapter Nineteen Modern Programming Languages, 2nd ed.

Variables

Any name beginning with an uppercase
letter or an underscore, followed by any
number of additional letters, digits or
underscores: X, Child, Fred, ., 123

Most of the variables you write will start
with an uppercase letter

Those starting with an underscore, including
_, get special treatment

Chapter Nineteen Modern Programming Languages, 2nd ed.

Compound Terms

An atom followed by a parenthesized,
comma-separated list of one or more terms:

x(y,z),+(1,2),.(1,[1),
parent (adam, seth),x(Y,x(Y,2))

A compound term can look like an ML
function call: £ (x,y)

Again, this 1s misleading
Think of them as structured data

Chapter Nineteen Modern Programming Languages, 2nd ed.

Terms

<term> ::= <constant> | <variable> | <compound-term>
<constant> ::= <integer> | <real number> | <atom>
<compound-term> ::= <atom> (<termlist>)

<termlist> ::= <term> | <term> , <termlist>

All Prolog programs and data are built from
such terms

Later, we will see that, for instance,
+ (1, 2) 1s usually written as 1+2

But these are not new kinds of terms, just
abbreviations

Chapter Nineteen Modern Programming Languages, 2nd ed.

Unification

Pattern-matching using Prolog terms

Two terms unify if there 1s some way of
binding their variables that makes them
1dentical

For instance, parent (adam,Child)
and parent (adam, seth) unify by
binding the variable Child to the atom
seth

More details later: Chapter 20

Chapter Nineteen Modern Programming Languages, 2nd ed.

The Prolog Database

A Prolog language system maintains a
collection of facts and rules of inference

It 1s like an internal database that changes as
the Prolog language system runs

A Prolog program 1s just a set of data for
this database

The simplest kind of thing in the database 1s
a fact. a term followed by a period

Chapter Nineteen Modern Programming Languages, 2nd ed. 10

Example

parent (kim,holly) .

parent (margaret,kim) .
parent (margaret,b kent) .
parent (esther margaret) .
parent (herbert,margaret).
parent (herbert, jean) .

A Prolog program of six facts
Defining a predicate parent of arity 2

We would naturally interpret these as facts
about families: Kim is the parent of Holly
and so on

Chapter Nineteen Modern Programming Languages, 2nd ed.

11

Outline

Using a Prolog language system

Chapter Nineteen Modern Programming Languages, 2nd ed.

12

SWI-Prolog

Welcome to SWI-Prolog ..

For help, use ?- help(Topic). or ?- apropos (Word).

?—-

Prompting for a query with ?-

Normally 1nteractive: get query, print result,
repeat

Chapter Nineteen Modern Programming Languages, 2nd ed.

13

The consult Predicate

?—- consult (relations).
% relations compiled 0.00 sec, 852 bytes
true.

?—

Predefined predicate to read a program from
a file into the database

File relations (or relations.pl)
contains our parent facts

Chapter Nineteen Modern Programming Languages, 2nd ed.

14

Simple Queries

?- parent (margaret,kent).
true.

?- parent (fred,pebbles).
false.

?—

A query asks the language system to prove
something

Some turn out to be true, some false

(Some queries, like consult, are executed
only for their side-effects)

Chapter Nineteen Modern Programming Languages, 2nd ed.

Final Period

?- parent (margaret,kent)

true.

?—-

Queries can take multiple lines

If you forget the final period, Prolog
prompts for more input with |

Chapter Nineteen Modern Programming Languages, 2nd ed.

Queries With Variables

?- parent (P, jean).
P = herbert.

?—- parent (P,esther).
false.

Any term can appear as a query, including a
term with variables

The Prolog system shows the bindings
necessary to prove the query

Chapter Nineteen Modern Programming Languages, 2nd ed.

17

Flexibility

Normally, variables can appear 1n any or all
positions 1n a query:

parent (Parent, jean)

parent (esther,Child)

parent (Parent,Child)

parent (Person, Person)

Chapter Nineteen Modern Programming Languages, 2nd ed.

18

Multiple Solutions

?- parent (Parent,Child).
Parent = kim,
Child = holly .

When the system finds a solution, 1t prints the
binding 1t found

If it could continue to search for additional
solutions, 1t then prompts for input

Hitting Enter makes 1t stop searching and print
the final period...

Chapter Nineteen Modern Programming Languages, 2nd ed. 19

Multiple Solutions

... entering a
semicolon makes it
continue the search

As often as you do
this, it will try to find
another solution

In this case, there 1s
one for every fact in
the database

Chapter Nineteen

?- parent (Parent,Child).
Parent = kim,
Child = holly ;,
Parent = margaret,
Child = kim ,
Parent = margaret,
Child = kent
Parent = esther,
Child = margaret ;
Parent = herbert,
Child = margaret ;,
Parent = herbert,
Child = jean.

Modern Programming Languages, 2nd ed. 20

Conjunctions

X = kim .

?- parent (margaret,X), parent (X,holly).

A conjunctive query has a list of query
terms separated by commas

The Prolog system tries prove them all
(using a single set of bindings)

Chapter Nineteen Modern Programming Languages, 2nd ed.

21

?- parent (Parent,kim), parent (Grandparent,Parent).
Parent = margaret,

Grandparent = esther ;

Parent = margaret,

Grandparent = herbert ;,

false.

?- parent (esther,Child),

| parent (Child,Grandchild),

| parent (Grandchild,GreatGrandchild) .
Child = margaret,

Grandchild = kim,

GreatGrandchild = holly

Chapter Nineteen Modern Programming Languages, 2nd ed.

22

Outline

Rules

Chapter Nineteen

Modern Programming Languages, 2nd ed.

23

The Need For Rules

Previous example had a lengthy query for
great-grandchildren of Esther

It would be nicer to query directly:
greatgrandparent (esther , GGC)

But we do not want to add separate facts of
that form to the database

The relation should follow from the
parent relation already defined

Chapter Nineteen Modern Programming Languages, 2nd ed. 24

A Rule hepe

greatgrandparent (GGP,GGC) :-

p arent (GGP ’ GP) ,
parent (GP, P) ,)
.................... Rarent(P,GGC).Mwﬁw’\\\\(xnnﬁﬁonS

A rule says how to prove something: to
prove the head, prove the conditions

To prove greatgrandparent (GGP,GGC), find
some Gp and p for which you can prove
parent (GGP,GP), then parent (GP,P) and then
finally parent (P, GGC)

Chapter Nineteen Modern Programming Languages, 2nd ed. 25

A Program With The Rule

parent (kim,holly) .
parent (margaret,kim) .
parent (margaret, kent) .
parent (esther margaret) .
parent (herbert,margaret).
parent (herbert, jean) .
greatgrandparent (GGP,GGC) :-
parent (GGP,GP) , parent (GP,P), parent(P,GGC) .

A program consists of a list of clauses

A clause 1s either a fact or a rule, and ends
with a period

Chapter Nineteen Modern Programming Languages, 2nd ed. 26

Example

?- greatgrandparent (esther,GreatGrandchild) .
GreatGrandchild = holly .

This shows the mitial query and final result

Internally, there are intermediate goals:
T'he first goal 1s the initial query

I'he next 1s what remains to be proved after
transforming the first goal using one of the
clauses (in this case, the greatgrandparent rule)

And so on, until nothing remains to be proved

Chapter Nineteen Modern Programming Languages, 2nd ed. 27

parent (herbert, jean) .
greatgrandparent (GGP,GGC) :-
parent (GGP,GP) , parent (GP,P), parent(P,GGC) .

1. parent(kim,holly).

2. parent (margaret,kim) . We will see more

3. parent (margaret,b kent). about Prolog s model
4. parent (esther,margaret). of execution in

5. parent (herbert,margaret). Chapter 20

6.

7.

greatgrandparent (esther,GreatGrandchild)
il(Hmme7;MnmngGGPtoestherandGGCtoGreatGrandChild

parent (esther,GP), parent(GP,P), parent (P,GreatGrandchild)
il(Hmme4;MnmngGPtomargaret

parent (margaret,P), parent (P,GreatGrandchild)
@ Clause 2, binding P to kim

parent (kim,GreatGrandchild)
il(HmmeI;MnmngGreatGrandchildtoholly

Chapter Nineteen Modern Programming Languages, 2nd ed. 28

Rules Using Other Rules

grandparent (GP,GC) :-
parent (GP,P) , parent (P,GC) .

greatgrandparent (GGP,GGC) :-
grandparent (GGP,P) , parent (P,GGC) .

Same relation, defined indirectly
Note that both clauses use a variable P

The scope of the definition of a variable 1s
the clause that contains 1t

Chapter Nineteen Modern Programming Languages, 2nd ed.

29

Recursive Rules

ancestor (X,Y) :- parent(X,Y).
ancestor (X,Y) :-

parent(z,Y),

ancestor (X, 2) .

X 1s an ancestor of Y 1f:
Base case: X 1s a parent of ¥

Recursive case: there 1s some 2 such that Z 1s a
parent of ¥, and X 1s an ancestor of Z

Prolog tries rules in the order you give
them, so put base-case rules and facts first

Chapter Nineteen Modern Programming Languages, 2nd ed.

30

?- ancestor (jean, jean).
false.

?- ancestor (kim,holly).
true

?- ancestor (A,holly).

A = kim ;

A = margaret ;
A = esther ;
A = herbert ,
false.

Chapter Nineteen Modern Programming Languages, 2nd ed.

Core Syntax Of Prolog

You have seen the complete core syntax:

<clause> ::= <fact> | <rule>

<fact> ::= <term> .

<rule> ::= <term> :- <termlist> .
<termlist> ::= <term> | <term> , <termlist>

There 1s not much more syntax for Prolog
than this: 1t 1s a very simple language
Syntactically, that 1s!

Chapter Nineteen Modern Programming Languages, 2nd ed. 32

Outline

The two faces of Prolog

Chapter Nineteen

Modern Programming Languages, 2nd ed.

33

The Procedural Side

greatgrandparent (GGP,GGC) :-
parent (GGP,GP) , parent (GP,P), parent (P,GGC) .

A rule says how to prove something:

To Pprove greatgrandparent (GGP,GGC), find some
cp and p for which you can prove

parent (GGP,GP), then parent (G, P) and then
ﬁnally parent (P,GGC)

A Prolog program specifies proof
procedures for queries

Chapter Nineteen Modern Programming Languages, 2nd ed. 34

The Declarative Side

A rule 1s a logical assertion:

For all bindings of cep, cp, p, and eac, 1f
parent (GGP,GP) and parent (GP, P) and
parent (P,GGC), then greatgrandparent (GGP, GGC)

Just a formula — 1t doesn’t say how to do
anything — 1t just makes an assertion:

VYGGP,GP,P,GGC .parent(GGP,GP) A parent(GP, P) A parent(P,GGC)
= greatgrandparent(GGP, GGC)

Chapter Nineteen Modern Programming Languages, 2nd ed. 35

Declarative Languages

Each piece of the program corresponds to a
simple mathematical abstraction

Prolog clauses — formulas 1n first-order logic
ML fun definitions — functions
Many people use declarative as the opposite
of imperative, including both logic
languages and functional languages

Chapter Nineteen Modern Programming Languages, 2nd ed. 36

Declarative Advantages

Imperative languages are doomed to subtle
side-effects and interdependencies

Simpler declarative semantics makes 1t
casier to develop and maintain correct
programs

Higher-level, more like automatic
programming: describe the problem and
have the computer write the program

Chapter Nineteen Modern Programming Languages, 2nd ed.

37

Prolog Has Both Aspects

Partly declarative

A Prolog program has logical content

Partly procedural

A Prolog

program has procedural concerns:

clause ordering, condition ordering, side-

effecting

predicates, etc.

It 1s important to be aware of both

Chapter Nineteen

Modern Programming Languages, 2nd ed. 38

Outline

Operators

Chapter Nineteen

Modern Programming Languages, 2nd ed.

39

Operators

Prolog has some predefined operators (and
the ability to define new ones)

An operator 1s just a predicate for which a
special abbreviated syntax 1s supported

Chapter Nineteen Modern Programming Languages, 2nd ed.

40

The = Predicate

The goal = (X, Y) succeeds if and only 1f X
and Y can be unified:

?- =(parent (adam,seth) ,parent (adam,X)) .
X = seth.

Since = 1s an operator, it can be and usually
1s written like this:

?- parent (adam,seth)=parent (adam,X) .

X = seth.

Chapter Nineteen Modern Programming Languages, 2nd ed.

41

Arithmetic Operators

Predicates +, —, * and / are operators too,
with the usual precedence and associativity

?- X = +(1,%(2,3)).
X = 1+2*3.
Prolog lets you use operator
?- X = 1+2*3. notation, and prints i1t out that
X = 142*3. way, but the underlying term
1sstill +(1,*(2,3))
Chapter Nineteen Modern Programming Languages, 2nd ed. 42

Not Evaluated

?- +(X,Y) = 1+27*3.
X 1,
Y 2%3,

?- 7 = 1+4+2%*3.
false.

The term 1s still + (1, * (2, 3))
It 1s not evaluated

There 1s a way to make Prolog evaluate
such terms, but we won’t need it yet

Chapter Nineteen Modern Programming Languages, 2nd ed.

Outline

Lists

Chapter Nineteen

Modern Programming Languages, 2nd ed.

44

Lists 1in Prolog

A bit like ML lists
The atom [] represents the empty list
A predicate . corresponds to ML’s : :

operator
ML expression Prolog term
[] []
1::10] - (1,11)
1::2::3::[] (1,.(2,.(3,11)))
No equivalent. . (1, . (parent(X,Y),[1))

Chapter Nineteen Modern Programming Languages, 2nd ed. 45

[List Notation

List notation Term denoted

[] []

[1] .(1,11)

[1,2,3] .(1,.(2,.(3,11)))
[1,parent (X,Y)] .(1,. (parent(X,Y),[1))

ML-style notation for lists

These are just abbreviations for the
underlying term using the . Predicate

Prolog usually displays lists 1n this notation

Chapter Nineteen Modern Programming Languages, 2nd ed.

46

Example

- X = .(1,.(2,.(3,[1)))-

x = [1I 2’
2= . (X,Y)
X =1,

Y = [2, 3]

Chapter Nineteen

3].

= [1,2,3].

Modern Programming Languages, 2nd ed.

47

[.1st Notation With Tail

List notation Term denoted
[1]X] . (1,X)
[1,2]X] .(1,.(2,X))
[1,2]|[3,4]] sameas [1,2,3,4]

Last in a list can be the symbol | followed by
a final term for the tail of the list

Useful 1n patterns: [1, 2 | X] unifies with any
list that starts with 1, 2 and binds X to the tail

- [1,2|X] = [1,2,3,4,5].
X = [3, 4, 5].

Chapter Nineteen Modern Programming Languages, 2nd ed. 48

The append Predicate

?- append([1,2],[3,4],2).
z =1[1, 2, 3, 4].

Predefined append (X, Y, Z) succeeds 1f
and only 1f Z 1s the result of appending the
list ¥ onto the end of the list X

Chapter Nineteen Modern Programming Languages, 2nd ed.

49

Not Just A Function

?= append(X, [3,4],[1,2,3,4]).
X = [1, 2]

append can be used with any pattern of
instantiation (that 1s, with variables in any
positions)

Chapter Nineteen Modern Programming Languages, 2nd ed.

50

Not Just A Function

?- append(X,Y,[1,2,3]).
X =11,
Y = [1, 2, 3] ;
X = [1],
Y = [2, 3] ;
X =[1, 2],
Y = [3] ;
X =[1, 2, 3],
Y =[] ;
false.
Chapter Nineteen Modern Programming Languages, 2nd ed.

51

An Implementation

append([], B, B).
append ([Head|TailA], B,

[Head |TailC])

append (TailA, B, TailC).

Chapter Nineteen Modern Programming Languages, 2nd ed.

52

Other Predefined List Predicates

Predicate Description
member (X,Y) Provable if the list ¥ contains the element X.
select (X,Y,Z) Provable if the list ¥ contains the element X, and Z 1s
the same as Y but with one instance of X removed.
nth0 (X, Y, 2Z) Provable if X is an integer, Y 1s a list, and Z 1s the Xth
element of ¥, counting from 0.
length (X, Y) Provable if X is a list of length Y.

All flexible, like append

Queries can contain variables anywhere

Chapter Nineteen Modern Programming Languages, 2nd ed. 53

Using select

?- select(2,[1,2,3],2).
z = [1, 3] -,
false.

?- select(2,Y,[1,3]).
Y =1[2, 1, 3] ;

Y = [1, 2, 3] ;

Y =[1, 3, 2] ;
false.

Chapter Nineteen Modern Programming Languages, 2nd ed.

54

The reverse Predicate

?- reverse([1,2,3,4],Y).
Y =1[4, 3, 2, 1].

Predefined reverse (X, Y) unifies Y with
the reverse of the list X

Chapter Nineteen Modern Programming Languages, 2nd ed.

55

An Implementation

reverse([]1,1[]) .

reverse ([Head|Tail] ,X) :-
reverse (Tail,Y),
append (Y, [Head] ,X) .

Not an efficient way to reverse

We’ll see why, and a more efficient
solution, in Chapter 21

Chapter Nineteen Modern Programming Languages, 2nd ed.

56

Non-Terminating Queries

?- reverse(X,[1,2,3,4]).
X =14, 3, 2, 1] ;,

“CAction (h for help) ? abort

(o)

% Execution Aborted
Lo J

Asking for another solution caused an
infinite loop

Hit Control-C to stop it, then a for abort

reverse cannot be used as flexibly as
append

Chapter Nineteen Modern Programming Languages, 2nd ed.

57

Flexible and Inflexible

Ideally, predicates should all be flexible like
append

They are more declarative, with fewer
procedural quirks to consider

But inflexible implementations are
sometimes used, for efficiency or simplicity

Another example 1s sort...

Chapter Nineteen Modern Programming Languages, 2nd ed. 58

Example

?- sort([2,3,1,4],X).
X =11, 2, 3, 4].

?- sort(X,[1,2,3,4]).
ERROR: Arguments are not sufficiently instantiated

A fully flexible sort would also be able to
unsort—ifind all permutations

But it would not be as efficient for the more
common task

Chapter Nineteen Modern Programming Languages, 2nd ed.

59

The Anonymous Variable

The variable _ 1s an anonymous variable

Every occurrence 1s bound independently of
every other occurrence

In effect, much like ML’s _: 1t matches any
term without introducing bindings

Chapter Nineteen Modern Programming Languages, 2nd ed. 60

Example

tailof ([_|A],A).

This tailof (X,Y) succeeds when X 1s a
non-empty list and Y 1s the tail of that list

Don’t use this, even though i1t works:

tailof ([Head|A] ,A).

Chapter Nineteen Modern Programming Languages, 2nd ed.

61

Dire Warning

append([], B, B).
append ([Head|TailA], B, [Head|TailC]) :-
append (TailA, B, Tailc).

Don’t 1ignore warning message about
singleton variables

As 1n ML, 1t 1s bad style to introduce a
variable you never use

More importantly: if you misspell a variable
name, this is the only warning you will see

Chapter Nineteen Modern Programming Languages, 2nd ed. 62

Outline

Negation and failure

Chapter Nineteen

Modern Programming Languages, 2nd ed.

63

The not Predicate

?- member(1,[1,2,3]).
true .

?- not (member (4,[1,2,3])).
false.

For simple applications, 1t often works quite
a bit logical negation

But it has an important procedural side...

Chapter Nineteen Modern Programming Languages, 2nd ed.

64

Negation As Failure

To prove not (X), Prolog attempts to
prove X

not (X) succeeds 1f X fails

The two faces again:
Declarative: not (X) = X

Procedural: not (X) succeeds if X fails, fails if
X succeeds, and runs forever if X runs forever

Chapter Nineteen Modern Programming Languages, 2nd ed.

65

Example

sibling (X,Y) :-
not (X=Y) ,
parent (P,X),
parent (P,Y) .

sibling (X, Y)
parent (P,X) ,
parent (P,Y),
not (X=Y) .

?- sibling(kim,kent).

true

?- sibling(kim,kim) .
false.

?- sibling(X,Y).
false.

*J
|

KX KX KX KX
I

sibling(X,Y).
kim,

kent ;

kent,

kim
margaret,
jean

= Jjean,

margaret

false.

Chapter Nineteen

Modern Programming Languages, 2nd ed.

66

Outline

What Prolog 1s good for

Chapter Nineteen

Modern Programming Languages, 2nd ed.

67

A Classic Riddle

A man travels with wolf, goat and cabbage
Wants to cross a river from west to east

A rowboat 1s available, but only large
enough for the man plus one possession

Woll eats goat if left alone together
Goat eats cabbage 1f left alone together

How can the man cross without loss?

Chapter Nineteen Modern Programming Languages, 2nd ed.

68

Configurations

Represent a configuration of this system as
a list showing which bank each thing is on
in this order: man, wolf, goat, cabbage

Initial configuration: [w,w,w,w]

[f man crosses with wolf, new state 1s
[e,e,w,w] — but then goat eats cabbage,
so we can’t go through that state

Desired final state: [e, e, e, e]

Chapter Nineteen Modern Programming Languages, 2nd ed. 69

Moves

In each move, man crosses with at most one
of his possessions

We will represent these four moves with
four atoms: wolf, goat, cabbage,
nothing

(Here, nothing indicates that the man
crosses alone 1n the boat)

Chapter Nineteen Modern Programming Languages, 2nd ed. 70

Moves Transform Configurations

Each move transforms one configuration to
another

In Prolog, we will write this as a predicate:
move (Config,Move,NextConfiqg)

Config is a configuration (like [w,w,w,w])
Move 1s a move (like wolf)

NextConfig is the resulting configuration (in
this case, [e,e,w,w])

Chapter Nineteen Modern Programming Languages, 2nd ed. 71

The move Predicate

change (e, w) .
change (w,e) .

move ([X,X,Goat,Cabbage] ,wolf, [Y,Y,Goat,Cabbage])
change (X,Y) .

move ([X,Wolf,6 X,Cabbage] ,goat, [Y,Wolf,Y,6 Cabbage])
change (X,Y) .

move ([X,Wolf, Goat,X] ,6 cabbage, [Y,Wolf, Goat,Y]) :-
change (X,Y) .

move ([X,Wolf,Goat,C] ,nothing, [Y,Wolf,Goat,C]) :-
change (X,Y) .

Chapter Nineteen Modern Programming Languages, 2nd ed.

72

Safe Configurations

A configuration 1s safe 1f

At least one of the goat or the wolf is on the
same side as the man, and

At least one of the goat or the cabbage 1s on the
same side as the man

oneEq (X, X,).
oneEq (X, ,X).

safe ([Man,Wolf,Goat,Cabbage]) :-
oneEq (Man,Goat ,Wolf),
oneEq (Man, Goat,h Cabbage) .

Chapter Nineteen Modern Programming Languages, 2nd ed.

73

Solutions

A solution 1s a starting configuration and a
list of moves that takes you to
[e,e,e,e], where all the intermediate
configurations are safe

solution([e,e,e,e],[]).
solution (Config, [Move|Rest]) :-
move (Config,Move, NextConfigqg),
safe (NextConfig),
solution (NextConfig,Rest).

Chapter Nineteen Modern Programming Languages, 2nd ed. 74

Prolog Finds A Solution

?- length(X,7), solution([w,w,w,w],X).
X = [goat, nothing, wolf, goat, cabbage, nothing, goat] .

Note: without the length (X, 7) restriction,
Prolog would not find a solution

It gets lost looking at possible solutions like
[goat,goat,goat,goat,goat..]
More about this in Chapter 20

Chapter Nineteen Modern Programming Languages, 2nd ed. 75

What Prolog Is Good For

The program specified a problem logically

It did not say how to search for a solution to
the problem — Prolog took 1t from there

That’s one kind of problem Prolog is
especially good for

More examples to come 1in Chapter 22

Chapter Nineteen Modern Programming Languages, 2nd ed. 76

