Chat Application Type Definitions

Constants

#define MAX_USERNAME 32

Message

typedef struct Message {
char *from;
char *text;

} Message;

Message Vector

typedef struct MessageVec {
Message *data;
int len;
int cap;

} MessageVec;

User

typedef struct User {

char name [MAX_USERNAME] ;

MessageVec inbox;
} User;

User Vector

typedef struct UserVec {
User *data;
int len;
int cap;

} UserVec;

Server State

typedef struct Server {
UserVec users;
int listen fd;

} Server;

RPC Types

typedef enum {
RPC_LOGIN,
RPC_LOGOUT,
RPC_TELL,
RPC_SAY,
RPC_RECEIVE,
} RpcType;

Request Payloads

typedef struct {

char username [MAX_ USERNAME] ;

} LoginReq;

typedef struct {

char username [MAX_USERNAME] ;

} LogoutReq;

/*
/*

/*
/*

/*

/*
/*

/*
/*

sender username (heap allocated)
message content (heap allocated)

heap-allocated array */
number of messages */
allocated capacity */

username (fixed buffer)
unread messages */

heap-allocated array */
number of users */
allocated capacity */

all logged-in users */
listening socket */

34

&
&y



typedef struct {

char username [MAX_ USERNAME] ;

char target [MAX USERNAME] ;

char *message; /* heap allocated */
} TellReq;

typedef struct {

char username [MAX_ USERNAME] ;

char *message; /* heap allocated */
} SayReq;

typedef struct {
char username [MAX_ USERNAME] ;
} ReceiveReq;

Unified Request

typedef struct {
RpcType type;
union {
LoginReqg login;
LogoutReqg logout;
TellReq tell;
SayReq say;
ReceiveReqg receive;
58
} Request;

Response Status

typedef enum {
/* success */
STATUS_OK,

/* application errors */
STATUS_ERR_USER_EXISTS,
STATUS_ERR_USER_NOT_FOUND,
STATUS_ERR_TARGET_NOT_ FOUND,
STATUS_ERR_MALFORMED,

/* network error */
STATUS_ERR_NETWORK, /* any connection/send/recv failure */
} Status;

Response

typedef struct {

Status status;

MessageVec messages; /* only populated for RECEIVE */
} Response;



