
Chat	Application	Type	Definitions
Constants
#define	MAX_USERNAME	32

Message
typedef	struct	Message	{
				char	*from;														/*	sender	username	(heap	allocated)	*/
				char	*text;														/*	message	content	(heap	allocated)	*/
}	Message;

Message	Vector
typedef	struct	MessageVec	{
				Message	*data;											/*	heap-allocated	array	*/
				int	len;																	/*	number	of	messages	*/
				int	cap;																	/*	allocated	capacity	*/
}	MessageVec;

User
typedef	struct	User	{
				char	name[MAX_USERNAME];	/*	username	(fixed	buffer)	*/
				MessageVec	inbox;								/*	unread	messages	*/
}	User;

User	Vector
typedef	struct	UserVec	{
				User	*data;														/*	heap-allocated	array	*/
				int	len;																	/*	number	of	users	*/
				int	cap;																	/*	allocated	capacity	*/
}	UserVec;

Server	State
typedef	struct	Server	{
				UserVec	users;											/*	all	logged-in	users	*/
				int	listen_fd;											/*	listening	socket	*/
}	Server;

RPC	Types
typedef	enum	{
				RPC_LOGIN,
				RPC_LOGOUT,
				RPC_TELL,
				RPC_SAY,
				RPC_RECEIVE,
}	RpcType;

Request	Payloads
typedef	struct	{
				char	username[MAX_USERNAME];
}	LoginReq;

typedef	struct	{
				char	username[MAX_USERNAME];
}	LogoutReq;



typedef	struct	{
				char	username[MAX_USERNAME];
				char	target[MAX_USERNAME];
				char	*message;																/*	heap	allocated	*/
}	TellReq;

typedef	struct	{
				char	username[MAX_USERNAME];
				char	*message;																/*	heap	allocated	*/
}	SayReq;

typedef	struct	{
				char	username[MAX_USERNAME];
}	ReceiveReq;

Unified	Request
typedef	struct	{
				RpcType	type;
				union	{
								LoginReq	login;
								LogoutReq	logout;
								TellReq	tell;
								SayReq	say;
								ReceiveReq	receive;
				};
}	Request;

Response	Status
typedef	enum	{
				/*	success	*/
				STATUS_OK,

				/*	application	errors	*/
				STATUS_ERR_USER_EXISTS,
				STATUS_ERR_USER_NOT_FOUND,
				STATUS_ERR_TARGET_NOT_FOUND,
				STATUS_ERR_MALFORMED,

				/*	network	error	*/
				STATUS_ERR_NETWORK,										/*	any	connection/send/recv	failure	*/
}	Status;

Response
typedef	struct	{
				Status	status;
				MessageVec	messages;									/*	only	populated	for	RECEIVE	*/
}	Response;


