Chat Application RPC Protocol

Overview

Binary RPC protocol using network byte order (big-endian), fixed-length integers, and length-prefixed
strings/arrays.

Each request and response is framed with a 4-byte length prefix to handle TCP stream boundaries.

General Encoding Rules

e Byte order: Network byte order (big-endian)

e Message framing: [[4-byte length (uint32_t)] [message data] | where length is the size of message data
only

Strings: | [2-byte length (uintl6_t)] [datal

Arrays: [2-byte count (uintlé6_t)] [elementl] [element2] ...

Integers: All multi-byte integers are in network byte order

Request Format
All requests start with a 1-byte RPC type identifier:

[1 byte: RpcTypel]
[type-specific payload]

RPC Type Values

RPC_LOGIN
RPC_LOGOUT
= RPC_TELL

= RPC_SAY

= RPC_RECEIVE

VI S o)
|

LOGIN Request

[1 byte: 0]
[2 bytes: username length]
[variable: username bytes]

LOGOUT Request

[1 byte: 1]
[2 bytes: username length]
[variable: username bytes]

TELL Request

[1 byte: 2]

[2 bytes: username length]
[variable: username bytes]
[2 bytes: target length]
[variable: target bytes]
[2 bytes: message lengthl]
[variable: message bytes]

SAY Request

[1 byte: 3]

[2 bytes: username length]
[variable: username bytes]
[2 bytes: message length]
[variable: message bytes]

RECEIVE Request

[1 byte: 4]
[2 bytes: username length]
[variable: username bytes]

Response Format
All responses start with a 1-byte status code:

[1 byte: Status]
[type-specific payload]

Status Code Values

STATUS_OK
STATUS_ERR_USER_EXISTS

= STATUS_ERR_USER_NOT_FOUND
STATUS_ERR_TARGET_NOT__FOUND
= STATUS_ERR_MALFORMED

= STATUS_ERR_NETWORK

Ul W N R o
|

Success Responses (LOGIN, LOGOUT, TELL, SAY)

[1 byte: 0]

RECEIVE Success Response

[1 byte: 0]

[2 bytes: message count]

[message 1]:
[2 bytes: from length]
[variable: from bytes]
[2 bytes: text lengthl]
[variable: text bytes]

Error Response (all RPC types)

[1 byte: error code (1-5)]

Examples

TELL Request: alice sends “hi” to bob

Message data (17 bytes total): [02 # RPC TELL 00 05 # username length = 5 61 6c 69 63 65 # "alice" 00 03 #
target length = 3 62 6f 62 # "bob" 00 02 # message length = 2 68 69 # "hi"

On wire (with 4-byte length prefix): (00 00 00 11 # message length = 17 02 00 05 61 6c 69 63 65 00 03 62 6f 62
00 02 68 69

TELL Error Response: target not found

Message data (1 byte): 03 # STATUS_ERR_TARGET_NOT_FOUND

On wire: [00 00 00 01 # message length = 1 03

RECEIVE Request: charlie receives messages

Message data (10 bytes): |04 # RPC_RECEIVE 00 07 # username length = 7 63 68 61 72 6c 69 65 # "charlie"

On wire: |00 00 00 Oa # message length = 10 04 00 07 63 68 61 72 6c 69 65

RECEIVE Success Response: 2 messages

Message data (32 bytes): |00 # STATUS_OK 00 02 # message count = 2 00 05 # from length = 5 61 6c 69 63 65 #

"alice" 00 05 # text lenath = 5 68 65 6c 6¢c 6f # "hello" 00 04 # from length = 4 64 61 76 65 # "dave" 00 03
text length = 3 68 69 21 # "hi!"

On wire: (00 00 00 20 # message length = 32 00 00 02 00 05 61 6c 69 63 65 00 05 68 65 6c 6c 6f 00 04 64 61
76 65 00 03 68 69 21

