
PPM	Menu
The	program	 ppm_menu 	can	be	used	to	edit	and	create	images.	The	program	keeps	track	of	3	 PPM 	objects:
input	image	1,	input	image	2,	and	output	image.

Quitting
The	 quit 	command	terminates	the	program.

Reading	and	writing	images
The	commands	 read1 	and	 read2 	read	a	 PPM 	file	into	the	input	images.	The	command	 write 	writes	to	a	 PPM
file	from	the	output	image.	 draw-ascii 	is	an	additional	output	mode,	displaying	the	output	image	to	the
terminal	in	a	simple	ASCII	art	format.	The	 copy 	command	allows	us	to	copy	from	input	image	1	into	the
output	image.

Image	editing
We	also	provide	some	primitive	image	editing	commands.	These	commands	generally	work	on	the	input
image	1.	The	 size 	command	sets	the	image	dimensions,	and	the	 max-color-value 	command	assigns	the
maximum	allowable	color	value	for	any	color	channel.

The	 channel 	and	 pixel 	commands	allow	the	user	to	change	the	color	of	individual	pixels.

Drawing	to	multiple	pixels
The	 clear 	command	sets	all	pixels	to	black.	The	 circle 	and	 box 	commands	allow	the	user	to	set	a	color	for
a	group	of	pixels	in	a	circular	or	rectangular	shape.

Image	filters
Image	filters	are	commands	that	work	on	a	group	of	pixels	at	the	same	time,	in	the	same	way.	Some	filters
use	only	input	image	1,	while	others	use	both	input	images.	Some	filters	modify	input	image	1,	and	other
filters	modify	the	output	image.

Filters	that	modify	input	image	1	using	only	input	image	1
*= 	and	 /= 	modify	the	pixels	of	input	image	1	using	the	pixels	of	input	image	1	and	a	user	specified	number,
with	the	mathematical	operation	specified	in	the	command	name	on	a	channel	by	channel	basis.

Filters	that	modify	input	image	1	using	both	input	images
+= 	and	 -= 	modify	the	pixels	of	input	image	1	using	the	pixels	of	input	image	1	and	input	image	2,	with	the
mathematical	operation	specified	in	the	command	name	on	a	channel	by	channel	basis.

Filters	that	modify	the	output	image	using	only	input	image	1
* 	and	 / 	modify	the	pixels	of	the	output	image	using	the	pixels	of	input	image	1	and	a	user	specified
number,	with	the	mathematical	operation	specified	in	the	command	name	on	a	channel	by	channel	basis.

red-gray ,	 green-gray ,	 blue-gray ,	and	 linear-gray 	modify	the	pixels	of	the	output	image	using	the	pixels
from	input	image	1.	The	output	image	only	contains	grayscale	colors.

Filters	that	modify	output	image	using	both	input	images
+ 	and	 - 	modify	the	pixels	of	the	output	image	using	the	pixels	of	input	image	1	and	input	image	2,	with	the
mathematical	operation	specified	in	the	command	name	on	a	channel	by	channel	basis.

Image	Creation	via	Paint	by	Numbers
In	the	paint	by	numbers	mode,	the	user	specifies	the	desired	size	of	the	image	and	a	color	pallet	as	a
numbered	table	of	colors.	The	user	then	chooses	the	color	for	each	pixel	in	the	image	by	putting	the	number
of	a	color	from	the	color	table	in	a	grid.	Finally,	the	numbers	in	the	grid	are	used	to	lookup	colors	in	the

table,	and	those	colors	are	used	to	assign	to	the	output	image.

The	paint	by	numbers	process:

Select	the	desired	pattern.
Configure	the	number	grid’s	size	and	maximum	number.
Store	numbers	in	the	number	grid	according	to	the	desired	geometric	pattern.
Configure	the	color	table	to	contain	the	desired	colors.
Create	the	output	image	using	the	number	grid	and	color	table.
Write	the	output	image	to	a	file.

Selecting	the	pattern
complex-fractal ,	 julia ,	and	 mandelbrot 	allow	the	user	to	select	the	form.	Some	versions	of	the	program	may
have	additional	patterns	based	on	student	choices	during	assignments,	personal	interest,	or	exam	work.

Number	Grid	Configuration
The	 grid 	command	allows	the	user	to	choose	the	size	of	the	number	grid,	which	is	the	ultimate	size	of	the
output	image.	It	also	sets	the	maximum	numeric	value	that	can	be	stored	in	a	grid	location.

Number	Grid	Manual	Editing
grid-set 	allows	the	user	to	manually	configure	the	number	in	a	grid	location.

Number	Grid	Computational	Editing
Algorithms	may	be	used	to	insert	numbers	into	the	number	grid	according	to	a	mathematical	pattern.

The	process	for	computational	editing	is:

Configure	the	pattern.
Compute	and	store	numbers	in	the	grid.

Configuring	the	pattern
Most	patterns	are	mappings	between	computations	using	real	numbers	in	the	number	plane	and	the	discrete
row	and	column	numbers	of	a	grid	location.	 fractal-plane-size 	allows	the	user	to	configure	the	region	of	the
number	plane	that	is	mapped	to	the	number	grid	rows	and	columns.

Some	pattern	forms	have	additional	configuration	options.	 julia-parameters 	allows	the	user	to	configure
numeric	parameters	that	control	the	Julia	set	pattern,	if	it	is	the	currently	selected	choice.

Computing	and	storing	numbers
fractal-calculate 	and	 fractal-calculate-single-thread 	are	used	to	compute	the	grid	numbers	by	the
selected	and	configured	pattern,	and	store	the	numbers	in	the	grid.

Defining	a	Color	Table
There	is	a	built-in	color	table	that	the	user	can	choose	to	use.	But,	there	are	additional	commands	to	allow
for	a	user	created	color	table.

set-color-table-size 	sets	the	number	of	colors	in	the	color	table.	 set-color 	allows	the	user	to	configure	the
red/green/blue	values	for	one	color	in	the	color	table.	 set-random-color 	assigns	a	random	set	of
red/green/blue	values	to	the	user	selected	color	in	the	color	table.

set-color-gradient 	sets	a	range	of	colors	in	the	color	table.	The	user	selects	the	first	and	last	color	in	the
range,	and	the	program	linearly	extrapolates	between	these	two	colors	to	fill	in	the	spaces	in	the	color	table
between	them.

Translating	Numbers	and	Colors	to	an	Image
This	is	the	last	step	in	the	paint	by	numbers	image	creation	mode.	It	is	assumed	that	the	color	table	has
been	configured	correctly,	and	the	number	grid	has	been	configured	correctly	before	this	operation.

grid-apply 	uses	the	numbers	in	the	grid	and	the	colors	in	the	built-in	color	table	to	assign	pixel	colors	to	the

output	image.	 grid-apply-color-table 	uses	the	numbers	in	the	grid	and	the	colors	in	the	color	table	to	assign
pixel	colors	to	the	output	image.

Command	Files
The	user	can	create	command	files	that	with	a	sequence	of	commands	to	executed,	then	feed	these
commands	to	the	program.	This	is	convenient	for	creating	an	image	by	iterative	updates	to	the	commands,
without	having	to	retype	all	of	the	commands	every	iteration.

For	example,	if	the	commands	are	stored	in	a	file	named	 pretty_picture.txt ,	the	commands	can	be	used	like
this:

./ppm_menu	<	pretty_picture.txt

Sample	 pretty_picture.txt

#	select	the	desired	pattern
julia
#	configure	the	grid	size	and	maximum	number
grid	400	600	200
#	configure	the	pattern
fractal-plane-size	-1.2	0.0		0.0	0.8
julia-parameters	-0.4	0.6
#	compute	and	store	the	numbers
fractal-calculate
#	<<<<<<<<<	Start	Color	Table	>>>>>>>>>>>>
set-color-table-size	101
set-color-gradient	0	255	0	0		50	255	255	255
set-color-gradient	50	255	255	255	100	0	255	0
#	<<<<<<<<<	End	Color	Table	>>>>>>>>>>>>
#	create	output	image
grid-apply-color-table
#	save	image	to	file
write	pretty_picture.ppm
#	done
quit

Notice	the	 # 	command	is	used	to	add	comments	to	the	command	file	that	don’t	affect	the	picture	created,
but	give	the	human	user	information	about	the	commands.

Download	pretty_picture.txt

Download	pretty_picture.ppm

Table	of	Commands
Function	Name Description

https://www.cs.utahtech.edu/cs/3005/assignments/guide/pretty_picture.txt
https://www.cs.utahtech.edu/cs/3005/assignments/guide/pretty_picture.ppm

Command	Name

quit quit “Quit.”
# commentLine “Comment	to	end	of	line.”
Read/Write
read1 readUserImage1 “Read	file	into	input	image	1.”
read2 readUserImage2 “Read	file	into	input	image	2.”
write writeUserImage “Write	output	image	to	file.”
copy copyImage “Copy	input	image	1	to	output	image.”
draw-ascii drawAsciiImage “Write	output	image	to	terminal	as	ASCII	art.”
Editing
size setSize “Set	the	size	of	input	image	1.”
max-color-value setMaxColorValue “Set	the	max	color	value	of	input	image	1.”
channel setChannel “Set	a	channel	value	in	input	image	1.”
pixel setPixel “Set	a	pixel’s	3	values	in	input	image	1.”
clear clearAll “Set	all	pixels	to	0,0,0	in	input	image	1.”
circle drawCircle Draw	a	circle	shape	in	input	image	1.
box drawBox Draw	a	box	shape	in	input	image	1.
Filters
”+=” plusEquals “Set	input	image	1	by	adding	in	input	image	2.”
”-=” minusEquals “Set	input	image	1	by	subtracting	input	image	2.”
“*=” timesEquals “Set	input	image	1	by	multiplying	by	a	number.”
”/=” divideEquals “Set	input	image	1	by	dividing	by	a	number.”

”+” plus
“Set	output	image	from	sum	of	input	image	1	and
input	image	2.”

”-” minus
“Set	output	image	from	difference	of	input	image	1
and	input	image	2.”

“*” times
“Set	output	image	from	input	image	1	multiplied	by	a
number.”

”/” divide
“Set	output	image	from	input	image	1	divided	by	a
number.”

red-gray grayFromRed Set	output	image	by	grayscale	from	red	on	input
image	1.

green-gray grayFromGreen Set	output	image	by	grayscale	from	green	on	input
image	1.

blue-gray grayFromBlue Set	output	image	by	grayscale	from	blue	on	input
image	1.

linear-gray grayFromLinearColorimetric Set	output	image	by	linear	colorimetric	grayscale	on
input	image	1.

Paint	by	Numbers
grid configureGrid Configure	the	grid.
grid-set setGrid Set	a	single	value	in	the	grid.
grid-apply applyGrid Use	the	grid	values	to	set	colors	in	the	output	image.

grid-apply-color-table applyGridColorTable Use	the	grid	values	to	set	colors	in	the	output	image
using	the	color	table.

fractal-plane-size setFractalPlaneSize Set	the	dimensions	of	the	grid	in	the	complex	plane.
julia-parameters setJuliaParameters Set	the	parameters	of	the	Julia	Set	function.
complex-fractal setComplexFractal Choose	to	make	a	complex	plane.
julia setJuliaFractal Choose	to	make	a	Julia	set.
mandelbrot setMandelbrotFractal Choose	to	make	a	Mandelbrot	set.
set-color-table-size setColorTableSize Change	the	number	of	slots	in	the	color	table.
set-color setColor Set	the	RGB	values	for	one	slot	in	the	color	table.

set-random-color setRandomColor Randomly	set	the	RGB	values	for	one	slot	in	the
color	table.

set-color-gradient setColorGradient Smoothly	set	the	RGB	values	for	a	range	of	slots	in
the	color	table.

the	color	table.

fractal-calculate calculateFractal Calculate	the	escape	values	for	the	fractal.
fractal-calculate-single-
thread calculateFractalSingleThread Calculate	the	escape	values	for	the	fractal,	single-thread.

