
CS	3005:	Programming	in	C++
Graphic	Interface	Parts	1	and	2
Introduction
In	this	assignment,	you	will	start	to	introduce	a	graphical	interface	to	the	semester’s	project,	using	GLUT
and	Open	GL.	The	next	assignment	will	complete	the	process.

This	is	a	double	assignment.	It’s	a	lot	of	work.	All	documented	here	in	one	place.

Assignment
In	this	assignment,	you	will	create	a	new	application	that	uses	the	GLUT	and	Open	GL	to	build	a	graphical
user	interface	(GUI)	for	much	of	the	functionality	of	the	semester’s	project.	To	start,	you’ll	download	the
starter	code	for	the	 glut_main 	program	from	the	course	website,	putting	the	code	in	the	new	diretory,	 gui-
src ,	as	a	sibling	of	the	 src 	directory.

The	starter	code	should	build	using	its	existing	 Makefile ,	and	linking	to	the	code	in	 src .

You	will	extend	this	code	to	add	additional	functionality.

Programming	Requirements
Create/Update	 glut_main.cpp
This	file	can	remain	unchanged	from	the	starter	code.	Maybe	you’ll	want	to	change	the	window	size	or	the
title.

Create/Update	 gl_draw.cpp
This	file	can	remain	unchanged	from	the	starter	code.

Create/Update	 glut_app.{h,cpp}
These	files	can	remain	unchanged	from	the	starter	code.

Create/Update	 glut_callback.cpp
Reconfigure	 keyboard_cb ,	 special_cb ,	and	 mouse_cb 	to	call	the	 GlutApp 	class’s	member	functions	that	do	the
actual	work.

Create/Update	 AppData.{h,cpp}
These	files	should	exist	in	the	starter	code.	The	 AppData 	class	provides	all	of	the	non-GUI	data	and
functionality	of	the	application.

Public	Enumerations:
enum	InteractionMode	{	IM_FRACTAL,	IM_COLORTABLE	}; 	Used	to	track	whether	to	display	the	output	image
or	the	color	table.
enum	FractalMode	{	M_MANDELBROT,	M_JULIA,	M_COMPLEX	};

Data	Members:
int	mHeight; 	The	height	of	the	display	window,	in	pixels.
int	mWidth; 	The	width	of	the	display	window,	in	pixels.
int	mMaxNumber; 	The	maximum	number	of	iterations	for	the	escape	counting.
InteractionMode	mInteractionMode; 	The	current	interaction	mode.
FractalMode	mFractalMode; 	The	current	fractal	mode.
int	mNumColor; 	The	number	of	colors	in	the	color	table.
Color	mColor1; 	The	first	color	in	the	color	table.
Color	mColor2; 	The	second	color	in	the	color	table.

http://computing.utahtech.edu/directorylisting.php?u=cs/3005/examples.examples/y24m04d10p01-gui-src-starter/


double	mMinX; 	The	minimum	X	value	in	the	complex	plane.
double	mMaxX; 	The	maximum	X	value	in	the	complex	plane.
double	mMinY; 	The	minimum	Y	value	in	the	complex	plane.
double	mMaxY; 	The	maximum	Y	value	in	the	complex	plane.
double	mA; 	The	A	parameter	for	the	Julia	set.
double	mB; 	The	B	parameter	for	the	Julia	set.
std::stringstream	mInputStream; 	The	input	stream	to	be	used	for	sending	communication	to
takeAction() .
std::stringstream	mOutputStream; 	The	output	stream	to	be	used	for	receiving	communication	from
takeAction() .
ActionData	mActionData; 	The	action	data.
MenuData	mMenuData; 	The	menu	data.
int	mDebug; 	The	debug	level.

Methods:
Several	of	these	methods	will	run	commands	after	configuring	the	input	stream	to	hold	the	required
information	for	the	command	to	run	correctly.	The	data	needed	to	configure	the	input	stream,	will	usually
come	from	parameters	passed	into	the	method.	These	methods	should	first	use	 clearStreams() 	to	clear	the
input	and	output	streams,	and	then	configure	the	input	stream	to	hold	the	information	needed	to	run	the
command,	then	call	 runCommand() 	to	run	the	command.

AppData(int	height,	int	width); 	-	Constructor	initializes	the	height	and	width.	Also	initializes	the	rest	of
the	data	members	such	that	the	default	image	constructed	is	an	interesting	Julia	set.	In	the	body	of	the
constructor,	be	sure	to	 configureMenu() ,	call	 setGrid(new	ComplexFractal) 	on	the	 ActionData 	data
member,	 setColorTable() ,	and	 createFractal() .
void	setSize(int	height,	int	width); 	Set	the	height	and	width.
int	getHeight()	const; 	Returns	the	height.
int	getWidth()	const; 	Returns	the	width.
PPM&	getOutputImage(); 	Returns	the	output	image	from	the	 ActionData 	data	member.
ColorTable&	getColorTable(); 	Returns	the	color	table	from	the	 ActionData 	data	member.
void	createJulia1(); 	Uses	the	data	members	method	to	create	a	Julia	pre-configured	set	image.	Must	be
interesting.
void	createJulia2(); 	Uses	the	data	members	method	to	create	a	Julia	pre-configured	set	image.	Must	be
interesting.
void	createMandelbrot1(); 	Uses	the	data	members	method	to	create	a	Mandelbrot	pre-configured	set
image.	Must	be	interesting.
void	createMandelbrot2(); 	Uses	the	data	members	method	to	create	a	Mandelbrot	pre-configured	set
image.	Must	be	interesting.
void	createComplexFractal1(); 	Uses	the	data	members	method	to	create	a	ComplexFractal	pre-
configured	image.

void	createComplexFractal2(); 	Uses	the	data	members	method	to	create	a	ComplexFractal	pre-
configured	image.

void	clearStreams(); 	Clear	the	input	and	output	streams,	by	resetting	their	flags,	and	setting	their
contents	to	the	empty	string.

void	runCommand(const	std::string&	choice); 	Call	 takeAction() .	If	 mDebug 	is	not	0,	then	display	the
choice 	and	contents	of	the	input	stream	to	 std::cout 	before	calling	 takeAction() ,	and	display	the
contents	of	the	output	stream	to	 std::cout 	after	calling	 takeAction() .

void	selectJulia(); 	Run	the	“julia”	command.

void	selectMandelbrot(); 	Run	the	“mandelbrot”	command.

void	selectComplexFractal(); 	Run	the	“complex-fractal”	command.

void	configureGrid(int	max); 	Run	the	“grid”	command.

void	juliaParameters(double	a,	double	b); 	Run	the	“julia-parameters”	command.

void	fractalPlaneSize(double	x_min,	double	x_max,	double	y_min,	double	y_max); 	Run	the	“fractal-plane-
size”	command.

void	fractalCalculate(); 	Run	the	“fractal-calculate”	command.

void	gridApplyColorTable(); 	Run	the	“grid-apply-color-table”	command.



void	setInteractionMode(InteractionMode	mode); 	Modifies	the	data	member	to	store	the	current
interaction	mode.

InteractionMode	getInteractionMode()	const; 	Returns	the	current	interaction	mode.

void	setColorTable(); 	Uses	the	“set-color-table-size”	and	“set-color-gradient”	commands	to	configure
the	color	table.	Uses	data	members	to	configure	the	size	of	the	color	table	and	the	color	gradient.	The
color	gradient	spans	from	the	beginning	to	the	end	of	the	color	table.

void	decreaseColorTableSize(); 	If	the	number	of	colors	is	more	than	 10 ,	decrease	the	number	of	colors
by	dividing	it	by	 1.1 .	Uses	 setColorTable() 	and	 gridApplyColorTable() 	to	update	the	output	image.

void	increaseColorTableSize(); 	If	the	number	of	colors	is	less	than	 1024 ,	increase	the	number	of	colors
by	multiplying	it	by	 1.1 .	Uses	 setColorTable() 	and	 gridApplyColorTable() 	to	update	the	output	image.

void	randomColor1(); 	Randomly	choose	RGB	values	for	color	1.	Each	RGB	value	is	between	0	and	255.
Uses	 setColorTable() 	and	 gridApplyColorTable() 	to	update	the	output	image.

void	randomColor2(); 	Randomly	choose	RGB	values	for	color	2.	Each	RGB	value	is	between	0	and	255.
Uses	 setColorTable() 	and	 gridApplyColorTable() 	to	update	the	output	image.

void	zoomIn(); 	Decrease	the	size	of	the	view	window	to	 0.9 	the	size.	Calculate	 dx 	as	 (1.0	-	0.9)*
(mMaxX	-	mMinX)	/	2.0 .	Add	 dx 	to	 mMinX 	and	subtract	it	from	 mMaxX .	Do	similar	for	the	 y 	dimension.
Does	not	recalculate	the	output	image.

void	zoomOut(); 	Increase	the	size	of	the	view	window	to	 1.1 	the	size.	Calculate	 dx 	as	 (1.0	-	0.9)*
(mMaxX	-	mMinX)	/	2.0 .	Subtract	 dx 	from	 mMinX 	and	add	it	to	 mMaxX .	Do	similar	for	the	 y 	dimension.
Only	do	this	zoom	operation	if	it	will	not	cause	any	of	the	plane	values	to	go	past	-2.0	or	2.0.	Does	not
recalculate	the	output	image.

void	moveLeft(); 	Move	the	view	port	to	the	left	by	the	fraction	 0.05 .	Calculate	 dx 	as	 (1.0	-	0.9)*
(mMaxX-mMinX)	/	2.0 .	If	 mMinX	-	dx 	is	at	least	 -2.0 ,	then	subtract	 dx 	from	 mMinX 	and	 mMaxX .	Does	not
recalculate	the	output	image.

void	moveRight(); 	Move	the	view	port	to	the	right	by	the	fraction	 0.05 ,	similar	to	 moveLeft() ,	except
add	to	 mMinX 	and	 mMaxX .

void	moveDown(); 	Like	 moveLeft() ,	but	for	the	 y 	dimension.

void	moveUp(); 	Like	 moveRight() ,	but	for	the	 y 	dimension.

void	setFractalMode(FractalMode	mode); 	Modifies	the	data	member	to	store	the	current	fractal	mode.

FractalMode	getFractalMode()	const; 	Returns	the	current	fractal	mode.

void	increaseMaxNumber(); 	If	the	 mMaxNumber 	is	less	than	 2048 ,	increase	it	by	multiplying	by	 1.1 .	Does
not	recalculate	the	output	image.

void	decreaseMaxNumber(); 	If	the	 mMaxNumber 	is	greater	than	 11 ,	decrease	it	by	dividing	by	 1.1 .	Does	not
recalculate	the	output	image.

void	setAB(int	x,	int	y); 	If	the	 mFractalMode 	is	 M_MANDELBROT ,	and	the	 mActionData 	grid	is	a
ComplexFractal ,	then	set	 mA 	to	 mMinX	+	x	*	delta_x ,	and	similar	for	 b 	and	 y .	 delta_x 	is	obtained	from
the	dynamically	cast	 ComplexFractal 	pointer	with	 getDeltaX() .	Does	not	recalculate	the	output	image.

void	resetPlane(); 	Sets	 mMinX 	and	the	other	three	data	members	to	 -2.0 	or	 2.0 ,	as	appropriate	to
make	the	default	square.	Does	not	recalculate	the	output	image.

void	createFractal(); 	Recomputes	the	output	image.	Uses	 mFractalMode 	to	choose	whether	to
selectMandelbrot() ,	 selectJulia() ,	or	 selectComplexFractal() .	For	Julia,	also	calls	 juliaParameters() .
Calls	 configureGrid() ,	 fractalPlaneSize() ,	 fractalCalculate() ,	and	 gridApplyColorTable() 	to	calculate
the	output	image.	Uses	data	members	for	parameters	to	these	functions.

Create/Update	 GlutApp.{h,cpp}
These	files	should	exist	in	the	starter	code.	The	 GlutApp 	class	provides	all	of	the	GUI	functionality	of	the
application,	using	the	 AppData 	class	to	store	information,	and	compute	the	output	image.

Data	Members:



AppData	mData; 	The	data	member	stores	the	state	of	the	application.

Methods:
GlutApp(int	height,	int	width); 	Initializes	the	data	member.
void	setSize(int	height,	int	width); 	Sets	the	 height 	and	 width 	in	the	data	member.	Re-
createFractal() 	the	currently	configured	fractal.
int	getHeight()	const; 	Returns	the	height	from	the	data	member.
int	getWidth()	const; 	Returns	the	width	from	the	data	member.
void	display(); 	Depending	on	the	interaction	mode	in	the	data	member,	call	one	of	the	following:
displayOutputImage() 	or	 displayColorTable() .
void	displayOutputImage(); 	Displays	the	output	image	from	the	data	member.

void	displayColorTable(); 	Displays	the	color	table	from	the	data	member.	The	color	table	should	be
displayed	with	the	first	color	on	the	left	of	the	window,	and	the	last	color	on	the	right	of	the	windows.
Here’s	a	rough	description	of	one	way	to	do	it.	For	each	row	in	the	display,	do	the	same	thing.	For	each
column	in	the	display:	calculate	the	index	into	the	color	table	using:	 i	=	column	*	color_table_size	/
width_of_display .	Use	the	 i th	color	from	the	color	table.	Prepare	each	color	channel	(red,	green,	blue)
for	OpenGL	by	dividing	by	 255.0 ,	then	use	 glColor3d(red,green,blue); 	to	set	the	color.	Finally,	draw	the
screen	pixel	using	 glVertex2i(column,	row); .	Repeat	this	process	for	every	pixel	in	the	display.

bool	keyboard(unsigned	char	c); 	Based	on	 c ,	the	keyboard	key	pressed,	call	the	correct	functions	in	the
data	member.	See	the	table	of	required	functionality.	Returns	true	if	the	display	should	be	updated.

bool	special(unsigned	char	c); 	Based	on	 c ,	the	special	key	pressed,	call	the	correct	functions	in	the
data	member.	See	the	table	of	required	functionality.	Returns	true	if	the	display	should	be	updated.

bool	mouse(int	mouse_button,	int	state,	int	x,	int	y); 	Based	on	 mouse_button ,	 state ,	 x ,	and	 y ,	call
the	correct	functions	in	the	data	member.	See	the	table	of	required	functionality.	Returns	true	if	the
display	should	be	updated.

Expected	Functionality
At	the	end	of	this	assignment,	your	 glut_main 	program	should	have	this	functionality:

Key/Action Method(s)	called Notes
Initial	image

start Displays	a	Julia	set	different	from	others	in	methods.
Pre-built	configurations

‘J’ createJulia1()

‘j’ createJulia2()

’M’ createMandelbrot1()

’m’ createMandelbrot2()

‘C’ createComplexFractal1()

‘c’ createComplexFractal2()

Interaction	modes
’T’ setInteractionMode() Color	table	interaction	mode
’t’ setInteractionMode() Fractal	interaction	mode

Fractal	Modes

‘b’ setFractalMode() ,
createFractal()

Mandelbrot	mode

‘n’ setFractalMode() ,
createFractal()

Julia	mode

‘F’ setFractalMode() ,
createFractal()

Complex	fractal	mode

Color	table	operations
’>’	or	‘.’ increaseColorTableSize() The	user	can	use	either	‘>’	or	‘.’,	your	code	must	support	both.
‘<’	or	‘,’

decreaseColorTableSize() The	user	can	use	either	‘<’	or	‘,’,	your	code	must	support	both.

‘r’ randomColor1() Color	table	display	mode	only.	Otherwise,	do	not	do	this	action.
‘R’ randomColor2() Color	table	display	mode	only.	Otherwise,	do	not	do	this	action.

Plane	coordinate	operations

‘z’ zoomIn() ,
createFractal()

Zoom	into	the	plane.



createFractal()

‘Z’ zoomOut() ,
createFractal()

Zoom	out	of	the	plane.

left	arrow moveLeft() ,
createFractal()

Move	the	view	port	left	in	the	plane.

right
arrow

moveRight() ,
createFractal()

Move	the	view	port	right	in	the	plane.

down
arrow

moveDown() ,
createFractal()

Move	the	view	port	down	in	the	plane.

up	arrow moveUp() ,
createFractal()

Move	the	view	port	up	in	the	plane.

‘R’ resetPlane() ,
createFractal()

Fractal	display	mode	only.	Otherwise,	do	not	do	this	action.

left	mouse
button

setAB() ,
setFractalMode() ,
createFractal()

Fractal	display	mode	and	Mandelbrot	fractal	mode	only.	Otherwise,	do
not	do	this	action.	Set	the	A/B	values,	change	the	fractal	mode	to	Julia,
the	create	the	fractal.
Fractal	calculation	configuration

’+’	or	‘=’ increaseMaxNumber() ,
createFractal()

The	user	can	use	either	‘+’	or	‘=’,	your	code	must	support	both.

’-’	or	‘_’ decreaseMaxNumber() ,
createFractal()

The	user	can	use	either	‘-’	or	‘_‘,	your	code	must	support	both.

Window	configuration

resize setSize() 	is	called.	It	should	recreate	the	fractal	currently	configured
in	the	data.

Update	 src/Makefile
No	changes	here:	The	following	commands	should	work	correctly.

make	hello 	-	builds	the	hello	program
make	questions_3 	-	builds	the	questions_3	program
make	ascii_image 	-	builds	the	ascii_image	program
make	image_file 	-	builds	the	image_file	program
make	ppm_menu 	-	builds	the	image_file	program
make	all 	-	builds	all	programs
make 	-	builds	all	programs	(same	as	 make	all )
make	clean 	-	removes	all	.o	files,	and	all	executable	programs

Update	 gui-src/Makefile
Should	be	able	to	use	the	file	as	is.

make	glut_main 	-	builds	the	application.
make	clean 	-	removes	all	.o	files,	and	all	executable	programs

Additional	Documentation
C++	Reference
Examples	from	class

Show	Off	Your	Work
To	receive	credit	for	this	assignment,	you	must

use	git	to	add,	commit	and	push	your	solution	to	your	repository	for	this	class.

Additionally,	the	program	must	build,	run	and	give	correct	output.

http://www.cplusplus.com/
http://computing.utahtech.edu/cs/3005/examples.php

