
CS	3005:	Programming	in	C++
Complex	Fractal	Plane
Introduction
In	a	previous	assignment,	we	created	a	number	grid,	that	allows	the	user	to	store	integer	numbers	at	each
location	in	a	rectangular,	regular	grid.	We	then	added	the	a	color	table	that	allows	the	user	to	assign	a	color
to	each	of	the	integers	stored	in	the	grid,	allowing	a	way	for	users	to	create	images	from	numbers.

The	next	series	of	assignments	will	add	ways	for	users	to	insert	numbers	into	the	number	grid	using
algorithms.	Most	of	these	algorithms	work	better	for	floating	point	numbers,	instead	of	integer	numbers.

In	this	assignment,	we’ll	add	a	translation	between	continuous	number	plane	(x,y)	coordinates	and	discrete
grid	(row,	column)	coordinates.

Then,	we’ll	create	a	simple	algorithm	to	calculate	numbers	using	the	number	plane,	and	store	the	numbers
in	the	grid.

Mapping	between	a	regular	grid	and	a	number	plane
Our	end	goal	is	to	have	a	rectangular	image	with	pixel	colors	assigned	based	on	a	mathematical	function.
The	function	will	take	plane	coordinates	(x,y)	as	input,	and	return	a	number	for	the	number	grid.	That
number	will	be	used	to	lookup	a	color	in	the	color	table,	to	set	a	pixel	color	in	an	image.

We	make	the	grid	with	dimensions	of	 height 	by	 width .	The	rows	of	the	grid	are	numbered	0	through	 height-
1 	and	the	columns	are	numbered	0	through	 width-1 .	For	each	of	these	grid	locations,	we	want	to	calculate	a
point	 x,y 	that	represents	the	center	of	the	pixel	in	the	number	plane.

If	two	grid	locations	are	horizontal	neighbors	(for	example,	column	differs	by	1,	and	row	is	the	same),	then
the	plane	coordinates	of	the	two	points	will	differ	by	a	fixed	amount	in	the	 x 	dimension.	Similarly,	if	two
grid	locations	are	vertical	neighbors	(for	example,	row	differs	by	1,	and	column	is	the	same),	then	the	plane
coordinates	of	the	two	points	will	differ	by	a	fixed	amount	in	the	 y 	dimension.

Depending	on	the	mathematical	function	we	use	to	calculate	numbers	for	our	grid,	we	may	want	the	part	of
the	number	plane	that	is	mapped	to	our	grid	to	be	different.	We	will	choose	minimum	and	maximum	values
for	x	and	y	that	correspond	to	the	centers	of	the	left	and	right	columns,	and	the	bottom	and	top	rows.
(Minimum	x	is	left;	maximum	x	is	right;	minimum	y	is	bottom;	maximum	y	is	top.)

For	example,	we	may	want	to	have	our	image	look	at	the	region	of	the	plane	from	-1.5	to	0.5	in	the	x	axis	and
-0.3	to	1.2	in	the	y	axis.	For	this	example,	we’ll	make	a	grid	that	is	4	locations	wide	and	3	locations	high.
(Very	small,	but	a	good	example	of	the	calculations.)

Let’s	calculate	the	x	coordinates	of	our	image.	First,	the	left	most	column	(0)	will	have	 x	=	-1.5 ,	because
that	is	the	left	side	of	the	region	of	the	image.	Next,	the	right	most	column	(3)	will	have	 x	=	0.5 ,	the	right
side	of	the	region.	What	are	the	x	coordinates	of	columns	1	and	2?	They	need	to	be	regularly	spaced.	There
are	 width-1	=	3 	gaps	between	our	columns.	Draw	a	picture	to	convince	yourself	that	 width-1 	is	the	correct
number	of	gaps.	We	will	use	the	term	 delta 	to	indication	the	change	in	a	coordinate	over	a	gap.

Since	there	are	3	gaps	to	travel	from	-1.5	to	0.5,	how	big	is	each	gap?	The	generic	formula	for	this	is	 delta_x
=	(max_x	-	min_x)	/	(width	-	1) .

delta_x	=	(	0.5	-	(	-1.5	)	)	/	(	4	-	1	)	=	2.0	/	3	=	0.666666

With	the	delta	between	columns	calculated,	we	can	easily	calculate	the	x	coordinate	for	any	column.	The
generic	formula	for	this	calculation	is	 x	=	min_x	+	column	*	delta_x .

x_column_0	=	min_x	+	0	*	delta_x	=	-1.5
x_column_1	=	min_x	+	1	*	delta_x	=	-0.833333
x_column_2	=	min_x	+	2	*	delta_x	=	-0.166666
x_column_3	=	min_x	+	3	*	delta_x	=		0.5

Using	these	two	formulas,	we	can	calculate	the	x	coordinate	of	any	column.

A	similar	discussion	for	calculating	the	y	coordinate	of	any	row	yields	these	results.



delta_y	=	(	1.2	-	(	-0.3	)	)	/	(	3	-	1	)	=	1.5	/	2	=	0.75
y_row_0	=	max_y	-	0	*	delta_y	=		1.2
y_row_1	=	max_y	-	1	*	delta_y	=		0.45
y_row_2	=	max_y	-	2	*	delta_y	=	-0.3

Now,	for	every	grid	location,	we	can	calculate	the	point	in	the	plane	(x0,y0),	from	the	(column,row)	of	the
pixel.	For	each	grid	location,	these	values	are	used	in	our	mathematical	function	to	calculate	a	number	to
store	in	the	grid.

Assignment
In	this	assignment	you	will	create	a	class	to	map	between	number	plane	and	grid	coordinates.	It	will	inherit
from	 NumberGrid 	for	the	height,	width,	max	value,	and	number	storage.

You	will	also	extend	the	 ppm_menu 	program	to	add	a	few	new	commands.

The	new	commands	required	are:

fractal-plane-size :	Set	the	dimensions	of	the	grid	in	the	complex	plane.
fractal-calculate :	Calculate	the	escape	values	for	the	fractal.

Programming	Requirements
The	following	files	must	be	updated	or	created	and	stored	in	the	 src 	directory	of	your	repository.

Updates	to	 NumberGrid.{h,cpp}
Updated	Methods:

virtual	void	setGridSize(const	int&	height,	const	int&	width); 	No	changes	in	the	implementation.
Added	 virtual 	in	declaration.

Additional	Methods:

virtual	int	calculateNumber(const	int&	row,	const	int&	column)	const	=	0; 	No	implementation.	This	is	a
pure	virtual	method.	For	this	method,	declare	it	in	the	header	file,	but	do	not	put	anything	in	the
implementation	file.
virtual	void	calculateAllNumbers(); 	For	every	(row,column)	pair,	calls	 calculateNumber 	to	get	a	number
and	 setNumber 	to	store	it.

Create	 ComplexFractal.{h,cpp}
This	class	will	handle	all	of	the	translations	between	plane	coordinates	(x,y)	and	number	grid	coordinates
(column,	row).	This	class	inherits	publicly	from	 NumberGrid .

Data	Members:

4	 double 	data	members:	Minimum	and	maximum	values	for	x	and	y	to	define	the	plane	size.	From	our
notes,	these	are	min_x,	max_x,	min_y,	and	max_y.
2	 double 	data	members:	Delta	values	for	x	and	y	to	define	the	grid	points	in	the	plane.	From	our	notes,
these	are	delta	x	and	delta	y.

Methods:

ComplexFractal(	); 	Default	constructor.	Sets	up	for	a	301x201	grid.	For	the	plane	coordinates	uses	the
3x2	rectangle	centered	on	the	origin.	Sets	the	default	value	for	delta_x	and	delta_y	to	0.01.	What	values
of	min_x	and	max_x	would	give	you	a	rectangle	of	width	3	and	centered	on	the	origin?	Be	sure	to	use
constructor	chaining.
ComplexFractal(	const	int&	height,	const	int&	width,	const	double&	min_x,	const	double&	max_x,	const
double&	min_y,	const	double&	max_y	); 	Constructor.	Sets	up	the	 NumberGrid 	and	 ComplexFractal 	data
members	from	parameters.	Be	sure	to	use	constructor	chaining.
virtual	~ComplexFractal(	); 	Must	exist,	but	has	empty	code	block.
double	getMinX(	)	const; 	Return	the	minimum	X	value	for	the	plane	coordinates.
double	getMaxX(	)	const; 	Return	the	maximum	X	value	for	the	plane	coordinates.
double	getMinY(	)	const; 	Return	the	minimum	Y	value	for	the	plane	coordinates.
double	getMaxY(	)	const; 	Return	the	maximum	Y	value	for	the	plane	coordinates.
virtual	void	setGridSize(	const	int&	height,	const	int&	width	); 	This	method	overrides	the	 NumberGrid
version.	Only	makes	changes	if	both	height	and	width	are	at	least	2.	If	so,	it	calls



NumberGrid::setGridSize() .	If	a	change	is	made,	updates	the	values	of	delta	x	and	delta	y	data	members.
Uses	 calculateDeltaX() ,	 calculateDeltaY() ,	and	 setDeltas() .
void	setPlaneSize(	const	double&	min_x,	const	double&	max_x,	const	double&	min_y,	const	double&	max_y
); 	Sets	the	4	plane	coordinates.	Only	makes	a	change	if	all	of	the	coordinate	values	are	between	-2.0
and	2.0,	inclusive.	Only	make	changes	if	the	minimum	and	maximum	value	for	a	dimension	are	different.
If	the	minimum	value	for	a	dimension	is	greater	than	the	maximum	value	for	the	dimension,
automatically	swap	them.	If	a	change	is	made,	updates	the	values	of	delta	x	and	delta	y	data	members.
Uses	 calculateDeltaX() ,	 calculateDeltaY() ,	and	 setDeltas() .
double	getDeltaX(	)	const; 	Returns	the	horizontal	delta	value	from	the	data	member.
double	getDeltaY(	)	const; 	Returns	the	vertical	delta	value	from	the	data	member.
void	setDeltas(	const	double&	delta_x,	const	double&	delta_y	); 	Assigns	the	deltas	to	data	members.
Only	assigns	if	both	values	are	positive.
double	calculateDeltaY(	)	const; 	Calculate	the	vertical	plane	distance	between	neighboring	pixel	rows.
This	is	the	delta	value	discussed	above.	Note	this	method	calculates	the	value	and	returns	it.	It	does	not
set	the	data	member.
double	calculateDeltaX(	)	const; 	Calculate	the	horizontal	plane	distance	between	neighboring	pixel
columns.	This	is	the	delta	value	discussed	above.	Note	this	method	calculates	the	value	and	returns	it.	It
does	not	set	the	data	member.
double	calculatePlaneXFromPixelColumn(	const	int&	column	)	const; 	Calculate	the	plane	x	value	for	a
given	column.	If	the	column	index	is	out	of	range	(if	 column 	is	less	than	zero	or	 column 	is	greater	than
or	equal	to	the	grid	width),	return	0.	Do	not	call	 calculateDeltaX() 	here.	Use	 getDeltaX() 	or	directly
access	the	data	member.	The	value	should	have	already	been	calculated	previously.
double	calculatePlaneYFromPixelRow(	const	int&	row	)	const; 	Calculate	the	plane	y	value	for	a	given	row.
If	the	row	index	is	out	of	range	(if	 row 	is	less	than	zero	or	 row 	is	greater	than	or	equal	to	the	grid
height),	return	0.	Do	not	call	 calculateDeltaY() 	here.	Use	 getDeltaY() 	or	directly	access	the	data
member.	The	value	should	have	already	been	calculated	previously.
void	calculatePlaneCoordinatesFromPixelCoordinates(	const	int&	row,	const	int&	column,	double&	x,
double&	y	)	const; 	Sets	x	and	y	to	the	plane	coordinates	for	the	row	and	column.	If	either	row	or	column
is	out	of	range,	set	both	x	and	y	to	0.	Notice	x	and	y	are	return	by	reference.
virtual	int	calculateNumber(	const	int&	row,	const	int&	column	)	const; 	If	the	row	and	column	will
make	a	valid	index,	calculate	values	for	x	and	y	from	row	and	column.	Then	use	the	formula:
std::abs(getMaxNumber()	*	std::sin(10*x)	*	std::cos(10*y)) 	to	calculate	an	integer	value.	Return	this
value.	If	row	and	column	are	not	valid,	return	-1.

Update	 image_menu.h 	and	 image_drawing.cpp
The	follow	functions	must	be	declared	and	implemented.

void	setFractalPlaneSize(ActionData&	action_data); 	Asks	the	user	for	the	 double s	“Min	X?	“,	“Max	X?	“,
“Min	Y?	”	and	“Max	Y?	“,	then	sets	the	plane	size.	Only	does	this	work	if	the	 grid 	is	actually	a
ComplexFractal 	object.	Otherwise,	gives	a	message	“Not	a	ComplexFractal	object.	Can’t	set	plane	size.”.
void	calculateFractal(ActionData&	action_data); 	Calculates	all	numbers	for	the	grid	stored	in
action_data .

Update	Functions	in	 controllers.cpp
void	configureMenu(	MenuData&	menu_data	) 	add	the	new	actions	with	the	names	and	descriptions	listed
below.
int	imageMenu(	std::istream&	is,	std::ostream&	os	); 	Instead	of	passing	a	 new	NumberGrid 	to	the
ActionData ’s	 setGrid() ,	send	a	 new	ComplexFractal .

Table	of	New	Commands

Command	Name Function	Name Description
fractal-plane-size setFractalPlaneSize Set	the	dimensions	of	the	grid	in	the	complex	plane.
fractal-calculate calculateFractal Calculate	the	escape	values	for	the	fractal.

Update	 Makefile
The	following	commands	should	work	correctly.

make	hello 	-	builds	the	hello	program
make	questions_3 	-	builds	the	questions_3	program
make	ascii_image 	-	builds	the	ascii_image	program
make	image_file 	-	builds	the	image_file	program



make	ppm_menu 	-	builds	the	image_file	program
make	all 	-	builds	all	programs
make 	-	builds	all	programs	(same	as	 make	all )
make	clean 	-	removes	all	.o	files,	and	all	executable	programs

Additional	Documentation
C++	Reference
Examples	from	class

Examples
Here	are	some	command	files	that	can	be	used	to	generate	some	example	images.	To	run	the	examples,
download	the	command	file,	copy	it	to	the	 src/ 	directory,	and	run	it	with	 ./ppm_menu	<	command-file-name .

Command	File Example	Output	Image Description

100-full-window.in

	Download

A	view	from	-2:2,-2:2

101-aspect-ratio.in
	Download

A	zoomed	view	near	the	origin

Show	Off	Your	Work
To	receive	credit	for	this	assignment,	you	must

use	git	to	add,	commit	and	push	your	solution	to	your	repository	for	this	class.
successfully	pass	all	unit	tests	and	acceptance	tests

Additionally,	the	program	must	build,	run	and	give	correct	output.

Extra	Challenges	(Not	Required)
Create	classes	that	inherit	from	 ComplexFractal 	that	have	different	functions,	 calculateNumber() ,	for
calculating	numbers.	Add	the	ability	to	use	them	from	the	program.
Make	methods	of	the	 ComplexFractal 	class	that	allow	for	zooming	in	or	out	in	the	plane.
Try	other	ways	to	modify	the	plane	and	parameters	that	would	make	it	easier	to	create	interesting
images.

http://www.cplusplus.com/
http://computing.utahtech.edu/cs/3005/examples.php
https://www.cs.utahtech.edu/cs/3005/assignments/assignment_10_complex_fractal/100-full-window.in
https://www.cs.utahtech.edu/cs/3005/assignments/assignment_10_complex_fractal/100-full-window.ppm
https://www.cs.utahtech.edu/cs/3005/assignments/assignment_10_complex_fractal/101-aspect-ratio.in
https://www.cs.utahtech.edu/cs/3005/assignments/assignment_10_complex_fractal/101-aspect-ratio.ppm

