
CS	3005:	Programming	in	C++
Color	Table
Introduction
A	color	table	is	an	array	of	colors.	It	is	useful	for	translating	a	single	number	in	a	range	(an	index)	into	a
color	(RGB	values),	reliably	and	repeatedly.

We	will	use	a	color	table	to	translate	grid	numbers	into	colors	to	create	colorful	images.

Assignment
The	 ppm_menu 	program	needs	to	add	a	few	new	commands	to	allow	the	user	to	configure	the	color	table,	and
to	use	it.

The	new	commands	required	are:

set-color-table-size)	Change	the	number	of	slots	in	the	color	table.
set-color)	Set	the	RGB	values	for	one	slot	in	the	color	table.
set-random-color)	Randomly	set	the	RGB	values	for	one	slot	in	the	color	table.
set-color-gradient)	Smoothly	set	the	RGB	values	for	a	range	of	slots	in	the	color	table.
grid-apply-color-table)	Use	the	grid	values	to	set	colors	in	the	output	image	using	the	color	table.

This	functionality	will	be	implemented	by	creating	a	class	to	store	a	single	RGB	 Color ,	and	a	 ColorTable class
to	store	a	vector	of	 Color 	objects.

Programming	Requirements
The	following	files	must	be	updated	or	created	and	stored	in	the	 src 	directory	of	your	repository.

Create	 ColorTable.{h,cpp}
These	files	will	be	used	to	declare	and	define	both	the	 Color 	and	the	 ColorTable 	classes.

Color 	class
Data	Members:

The	integer	representation	of	red,	green	and	blue	channels	of	a	color.

Methods:

Color(); 	Sets	all	color	channels	to	value	0.
Color(const	int&	red,	const	int&	green,	const	int&	blue); 	Sets	the	color	channels	to	the	values
provided	here.	No	range	checking	is	applied.
int	getRed()	const; 	Returns	the	value	of	the	red	channel.
int	getGreen()	const; 	Returns	the	value	of	the	green	channel.
int	getBlue()	const; 	Returns	the	value	of	the	blue	channel.
int	getChannel(const	int&	channel)	const; 	Returns	the	value	of	the	 channel th	channel.	0	==	red,	1	==
green,	2	==	blue.	Returns	-1	if	the	channel	is	out	of	range.
void	setRed(const	int&	value); 	Changes	the	red	channel	to	 value .	If	 value 	is	less	than	0,	do	not	make
any	changes.
void	setGreen(const	int&	value); 	Changes	the	green	channel	to	 value .	If	 value 	is	less	than	0,	do	not
make	any	changes.
void	setBlue(const	int&	value); 	Changes	the	blue	channel	to	 value .	If	 value 	is	less	than	0,	do	not
make	any	changes.
void	setChannel(const	int&	channel,	const	int&	value); 	Changes	the	 channel th	channel	to	 value .	If
value 	is	less	than	0,	do	not	make	any	changes.	0	==	red,	1	==	green,	2	==	blue.	Does	not	make
changes	if	 channel 	is	out	of	range.
void	invert(const	int&	max_color_value); 	Inverts	the	red,	green	and	blue	channels,	using
max_color_value .	If	 max_color_value 	is	less	than	any	of	the	current	color	channels	(red,	green	or	blue),
then	make	no	changes.	The	inversion	is	completed	by	subtracting	the	current	value	from
max_color_value.	For	example:	 red	=	max_color_value	-	red .	This	only	makes	sense	if	red	is	<=
max_color_value.	That’s	why	we	make	no	changes	if	any	channel	(red,	green	or	blue)	is	larger	than

max_color_value.
bool	operator==(const	Color&	rhs)	const; 	Returns	 true 	if	 *this 	and	 rhs 	have	the	same	color	values.
Otherwise,	returns	 false .

Additional	support	functions	for	the	 Color 	class:

std::ostream&	operator<<(std::ostream&	os,	const	Color&	color); 	Displays	the	color	to	 os 	in	the
following	format:	“red:green:blue”.	For	example,	if	the	color	has	red	=	13,	green	=	2	and	blue	=	45,
then	the	output	would	be	“13:2:45”.

ColorTable 	class
Data	Members:

A	linear	collection	of	 Colors .	(Think	 std::vector .)

Methods:

ColorTable(const	int&	num_color); 	Sizes	the	 Color 	collection	to	 num_color 	items.
int	getNumberOfColors()	const; 	Returns	the	number	of	 Color s	stored.
void	setNumberOfColors(const	int&	num_color); 	Resizes	the	collection	to	hold	 num_color 	items.	Previous
Color 	contents	may	or	may	not	be	preserved.
const	Color&	operator[](const	int&	i)	const; 	Returns	the	 i th	 Color 	in	the	collection.	If	 i 	is	out	of
range,	returns	a	 static 	memory	 Color 	object	with	all	three	channels	set	to	 -1 .	See	an	example	below.
Color&	operator[](const	int&	i); 	Returns	the	 i th	 Color 	in	the	collection.	If	 i 	is	out	of	range,	returns
a	 static 	memory	 Color 	object	with	all	three	channels	set	to	 -1 .
void	setRandomColor(const	int&	max_color_value,	const	int&	position); 	Assigns	the	 position th	color
random	values	for	all	three	channels.	The	random	values	are	between	0	and	 max_color_value ,	inclusive.
If	 position 	is	out	of	range,	no	change	is	made.	If	 max_color_value 	is	less	than	0,	no	change	is	made.	This
method	should	NOT	use	 std::srand() 	Add	 std::srand(std::time(0)); 	to	 main() 	of	 ppm_menu.cpp .
double	gradientSlope(const	double	y1,	const	double	y2,	const	double	x1,	const	double	x2)	const;
Calculates	a	slope	from	point	1	to	point	2,	using	“rise-over-run”	calculation.	Be	sure	to	use	floating
point	division	operation.
double	gradientValue(const	double	y1,	const	double	x1,	const	double	slope,	const	double	x)	const;
Calculate	the	y-value	along	the	gradient	from	point	(x1,y1)	to	the	point	at	position	x.
void	insertGradient(const	Color&	color1,	const	Color&	color2,	const	int&	position1,	const	int&
position2); 	Change	the	colors	from	 position1 	to	 position2 ,	inclusive,	to	be	gradients	from	 color1 	to
color2 .	If	 position1 	is	not	less	than	 position2 ,	no	change	is	made.	If	either	position	is	out	of	range,	no
change	is	made.	Should	use	the	 gradientSlope() 	and	 gradientValue() 	methods.
int	getMaxChannelValue()	const; 	Finds	the	largest	value	of	any	red,	greeen,	or	blue	value	in	any	color
in	the	table.

Creating	a	 static	Color 	object	to	return	in	error	cases.

{
				static	Color	ec(-1,	-1,	-1);
				static	Color	c(-1,	-1,	-1);
				c	=	ec;
				return	c;
}

Update	 NumberGrid.{h,cpp}
You	will	add	a	method	to	set	a	 PPM 	object	from	the	grid	numbers,	using	a	 ColorTable 	instead	of	the	built	in
table	with	8	colors.	Do	not	remove	the	previous	method.	Just	add	this	one.

Add	this	method:

void	setPPM(PPM&	ppm,	const	ColorTable&	colors)	const; 	Uses	the	currently	stored	grid	numbers	to
configure	an	image	in	the	PPM	object.	Sets	the	width	and	height	of	the	image	to	match	the	width	and
height	of	the	grid.	Sets	the	maximum	color	value	to	the	maximum	color	value	of	any	color	in	the	color
table	(getMaxChannelValue()).	For	each	pixel	in	the	PPM	object,	sets	the	color	based	on	the	grid	number
for	the	pixel.	If	the	color	table	does	not	have	at	least	2	colors,	make	no	changes	to	the	PPM	object.	The
grid	number	will	be	used	as	the	index	into	the	color	table,	with	a	special	case:	if	the	grid	number	is	the
maximum	grid	number,	use	the	color	table	item	with	the	highest	index	number;	otherwise	use	grid
number	modulus	color	table	size	as	the	index	into	the	table.

Updates	to	 ActionData.{h,cpp}

Additional	Data	Members:

ColorTable 	A	color	table	object.

Updated	Methods:

ActionData(std::istream&	is,	std::ostream&	os) 	Needs	to	initialize	the	color	table	to	have	16	color	table
slots.	Also	should	fill	the	color	table	with	a	gradient	from	 0,255,0 	to	 255,0,255 .

Additional	Methods:

ColorTable&	getTable(); 	Returns	the	color	table	data	member.

Update	 image_menu.h 	and	 image_drawing.cpp
The	follow	functions	must	be	declared	and	implemented.

void	setColorTableSize(ActionData&	action_data); 	Asks	the	user	for	the	“Size?	“,	then	applies	it	to	the
color	table.
void	setColor(ActionData&	action_data); 	Asks	the	user	for	“Position?	“,	“Red?	“,	“Green?	“,	and	“Blue?	“.
Then	uses	them	to	set	a	color	at	the	specified	position	in	the	color	table.
void	setRandomColor(ActionData&	action_data); 	Asks	the	user	for	“Position?	“,	then	uses	 setRandomColor()
to	set	a	random	color	at	that	position	in	the	color	table.	Use	 255 	for	the	maximum	color	value.
void	setColorGradient(ActionData&	action_data); 	Asks	the	user	for	“First	position?	“,	“First	red?	“,	“First
green?	“,	“First	blue?	“,	“Second	position?	“,	“Second	red?	“,	“Second	green?	”	and	“Second	blue?	“.	The
uses	them	to	 insertGradient() 	in	the	color	table.
void	applyGridColorTable(ActionData&	action_data); 	Uses	the	new	 setPPM 	method	of	the	grid	to	set	the
output	image	PPM	using	color	table.	Note	this	is	not	a	replacement	for	 applyGrid ,	this	is	in	addition	to
that	function.

Update	 controllers.cpp
void	configureMenu(MenuData&	menu_data) 	add	the	new	actions	with	the	names	and	descriptions	listed
below.

Table	of	New	Commands

Command	Name Function	Name Description
set-color-table-size setColorTableSize Change	the	number	of	slots	in	the	color	table.
set-color setColor Set	the	RGB	values	for	one	slot	in	the	color	table.
set-random-color setRandomColor Randomly	set	the	RGB	values	for	one	slot	in	the	color	table.

set-color-gradient setColorGradient Smoothly	set	the	RGB	values	for	a	range	of	slots	in	the	color
table.

grid-apply-color-
table applyGridColorTable Use	the	grid	values	to	set	colors	in	the	output	image	using	thecolor	table.

Update	 ppm_menu.cpp
int	main(); 	Add	 std::srand(std::time(0));

Update	 Makefile
The	following	commands	should	work	correctly.

make	hello 	-	builds	the	hello	program
make	questions_3 	-	builds	the	questions_3	program
make	ascii_image 	-	builds	the	ascii_image	program
make	image_file 	-	builds	the	image_file	program
make	ppm_menu 	-	builds	the	image_file	program
make	all 	-	builds	all	programs
make 	-	builds	all	programs	(same	as	 make	all)
make	clean 	-	removes	all	.o	files,	and	all	executable	programs

Additional	Documentation

C++	Reference
Examples	from	class
Color	Gradient	Discussion
Color	Gradient	on	Wikipedia	(Only	marginally	useful.)
Hints	on	choosing	color	schemes
Paletton	color	selection	site

Show	Off	Your	Work
To	receive	credit	for	this	assignment,	you	must

use	git	to	add,	commit	and	push	your	solution	to	your	repository	for	this	class.
successfully	pass	all	unit	tests	and	acceptance	tests

Additionally,	the	program	must	build,	run	and	give	correct	output.

Extra	Challenges	(Not	Required)
Create	additional	methods	in	the	 ColorTable 	class	that	allow	for	easy	insertion	of	interesting	color
patterns.	Add	the	ability	to	use	them	from	the	 imageMenu() .	For	example,	can	you	implement	a	system	to
use	a	color	and	its	complement	to	make	a	gradient?
Create	a	method	of	 NumberGrid 	to	find	the	maximum	number	stored.	Add	the	ability	to	set	the	number	of
colors	in	the	color	table	to	match	this	number	from	 imageMenu() .
Try	other	ways	to	modify	the	color	system	to	make	good	color	systems.	For	example,	can	you	make	an
HSV	based	color	system	that	would	make	setting	the	color	more	convenient	for	designers?

http://www.cplusplus.com/
http://computing.utahtech.edu/cs/3005/examples.php
https://www.cs.utahtech.edu/cs/3005/assignments/assignment_09_color_table/description_color_gradient.php
https://en.wikipedia.org/wiki/Color_gradient
https://blog.hubspot.com/marketing/color-theory-design
http://paletton.com/

