
CS	3005:	Programming	in	C++
Paint	By	Numbers	(NumberGrid)
A	two-dimensional	grid	of	values	can	be	represented	in	several	different	ways	in	software.	One	way	is	to	use
a	one-dimensional	array	and	use	a	function	to	translate	from	the	two-dimensional	coordinates	to	the	one-
dimensional	index.	This	is	like	the	way	you	have	been	storing	three-dimensional	data	in	the	PPM	class.

Assignment
This	assignment	will	extend	the	previous	menu	based	program	to	allow	the	user	to	“paint	by	numbers”.	The
user	will	store	a	single	number	per	location	in	a	grid.	Your	program	will	create	an	image	with	the	same
height	and	width	as	the	grid,	and	translate	the	numbers	into	colors	for	the	pixels.

For	example,	every	place	the	user	stores	the	number	3	in	the	grid	will	have	the	same	pixel	color	values	in
the	image.

Our	implementation	will	require	a	class	to	store	and	manage	a	two	dimensional	grid	of	integers.	The	number
grid	will	use	a	height	and	width	to	manage	the	dimensions	of	the	data.	When	a	value	is	read	or	written,	a
row	and	a	column	must	be	specified	to	uniquely	identify	the	value.	Values	may	only	be	in	the	range	0
through	a	maximum	configured	value.	The	maximum	configured	value	can	be	any	integer	in	the	range	0	to
2^31	-	1	(roughly	2	billion).

The	 ppm_menu 	program	will	have	a	few	new	commands:

grid :	Configure	the	grid.
grid-set :	Set	a	single	value	in	the	grid.
grid-apply :	Use	the	grid	values	to	set	colors	in	the	output	image.

Programming	Requirements
The	following	files	must	be	updated	or	created	and	stored	in	the	 src 	directory	of	your	repository.

Create	 NumberGrid.{h,cpp}
Declare	the	 NumberGrid 	class	in	the	header	file,	and	implement	its	methods	in	the	implementation	file.
Descriptions	of	the	data	members	and	methods	follow.	This	class	will	be	used	to	store	a	rectangular	grid	of
numbers.	The	numbers	will	be	used	to	select	colors	to	assign	to	pixels	in	an	image.

Data	Members:

int 	The	height	of	the	grid.
int 	The	width	of	the	grid.
int 	The	maximum	value	allowed	in	the	grid.
std::vector<int> 	The	grid	numbers.

Methods:

NumberGrid(	); 	Initializes	the	grid	to	a	height	of	300,	width	of	400,	max	number	of	255,	and	fills	the	grid
with	0s.
NumberGrid(	const	int&	height,	const	int&	width	); 	Initializes	the	grid	to	the	height	specified,	width
specified,	max	number	of	255,	and	fills	the	grid	with	0s.
virtual	~NumberGrid(); 	This	destructor	only	needs	an	empty	block	of	code.	But,	it	must	exist.
int	getHeight(	)	const; 	Returns	the	height	of	the	grid.
int	getWidth(	)	const; 	Returns	the	width	of	the	grid.
int	getMaxNumber(	)	const; 	Returns	the	maximum	number	allowed	in	the	grid.
void	setGridSize(	const	int&	height,	const	int&	width	); 	Sets	the	height	and	width	of	the	grid,	and
resizes	the	grid	storage	vector	correctly.	Only	makes	any	of	these	changes	if	the	height	and	width	are
both	at	least	 2 .	The	state	of	the	grid	values	after	the	resize	is	undefined.
void	setMaxNumber(	const	int&	number	); 	Change	the	maximum	value	allowed	in	the	grid.	Only	make
changes	if	the	new	maximum	allowed	value	is	at	least	 0 .	The	state	of	grid	values	that	are	larger	than
the	new	maximum	allowed	value	is	undefined.
const	std::vector<	int	>&	getNumbers(	)	const; 	Returns	a	reference	to	the	 std::vector 	of	grid	values.
int	index(	const	int&	row,	const	int&	column	)	const; 	Returns	the	index	in	the	grid	value	vector
calculated	from	the	formula:	row	times	width	plus	column.
bool	indexValid(	const	int&	row,	const	int&	column	)	const; 	Returns	true	if	row	and	column	are	both



within	the	range	of	the	grid.	Otherwise	returns	false.
bool	numberValid(	const	int&	number	)	const; 	Returns	true	if	the	number	is	non-negative	and	is	no
larger	than	the	maximum	allowed	value.
int	getNumber(	const	int&	row,	const	int&	column	)	const; 	Returns	a	number	from	the	grid,	at	the
position	specified	by	the	row	and	column.	If	the	position	is	not	valid,	returns	 -1 .
void	setNumber(	const	int&	row,	const	int&	column,	const	int&	number	); 	Sets	a	number	in	the	grid,	at
the	position	specified	by	the	row	and	column.	The	value	is	specified	by	the	 number 	parameter.	Only
makes	a	change	if	the	position	is	valid	and	the	number	is	valid.
void	setPPM(	PPM&	ppm	)	const; 	Configures	the	meta	data	of	the	PPM	object	so	that	the	height	and	width
match	that	of	the	number	grid.	Sets	the	maximum	color	value	of	the	PPM	to	63.	Finally,	for	each	pixel	in
the	PPM	object,	sets	the	color	based	on	the	table	below.

Number	in	Grid Color	(R,	G,	B)
0 (0,	0,	0)
maximum	value	allowed	in	the	grid (63,	31,	31)
number	%	8	==	0 (63,	63,	63)
number	%	8	==	1 (63,	31,	31)
number	%	8	==	2 (63,	63,	31)
number	%	8	==	3 (31,	63,	31)
number	%	8	==	4 (0,	0,	0)
number	%	8	==	5 (31,	63,	63)
number	%	8	==	6 (31,	31,	63)
number	%	8	==	7 (63,	31,	63)

Updates	to	 ActionData.{h,cpp}
Additional	Data	Members:

NumberGrid	* 	A	number	grid	pointer.

Updated	Methods:

ActionData(std::istream&	is,	std::ostream&	os) 	Needs	to	initialize	the	number	grid	pointer	data	member
to	 0 	(the	null	pointer).

Additional	Methods:

~ActionData(); 	The	destructor.	Must	 delete 	the	number	grid	pointer,	but	only	if	the	number	grid
pointer	is	not	 0 .
NumberGrid&	getGrid(); 	Returns	the	dereferenced	number	grid	pointer.	For	example,	if	the	data	member
was	named	 fred ,	this	method	would	return	 *fred ,	or	 *(this->fred) .
void	setGrid(NumberGrid	*grid); 	If	the	data	member	number	grid	pointer	is	not	 0 ,	 delete 	it.	Always
assign	the	data	member	number	grid	pointer	to	the	parameter	 grid .	Note	this	is	copying	pointers,	not
copying	the	contents	pointed	to.

Update	 image_menu.h 	and	 image_drawing.cpp
The	follow	functions	must	be	declared	and	implemented.

void	configureGrid(ActionData&	action_data); 	Prompt	the	user	for	integers	“Grid	Height?	“,	“Grid	Width?
“,	and	“Grid	Max	Value?	“.	Use	them	to	configure	the	existing	NumberGrid	object	in	the	ActionData.
Does	not	create	a	new	NumberGrid	object.
void	setGrid(ActionData&	action_data); 	Prompt	the	user	for	integers	“Grid	Row?	“,	“Grid	Column?	“,	and
“Grid	Value?	“.	Use	them	to	set	a	number	in	the	NumberGrid	object	of	ActionData.
void	applyGrid(ActionData&	action_data); 	Configure	the	output	image	using	the	number	grid.

Update	 controllers.cpp
The	following	functions	will	require	updates	to	their	implementations.

void	configureMenu(	MenuData&	menu_data	) 	add	the	new	actions	with	the	names	and	descriptions	listed
below.
int	imageMenu(std::istream&	is,	std::ostream&	os) 	After	the	 ActionData 	object	is	created,	set	the
number	grid	of	the	action	data	object	to	be	the	pointer	to	a	 NumberGrid 	object	allocated	from	the	heap.
(Think	 new	NumberGrid .)



Table	of	New	Commands

Command	Name Function	Name Description
grid configureGrid Configure	the	grid.
grid-set setGrid Set	a	single	value	in	the	grid.
grid-apply applyGrid Use	the	grid	values	to	set	colors	in	the	output	image.

Update	 Makefile
The	following	commands	should	work	correctly.

make	hello 	-	builds	the	hello	program
make	questions_3 	-	builds	the	questions_3	program
make	ascii_image 	-	builds	the	ascii_image	program
make	image_file 	-	builds	the	image_file	program
make	ppm_menu 	-	builds	the	image_file	program
make	all 	-	builds	all	programs
make 	-	builds	all	programs	(same	as	 make	all )
make	clean 	-	removes	all	.o	files,	and	all	executable	programs

Additional	Documentation
C++	Reference
Examples	from	class

Show	Off	Your	Work
To	receive	credit	for	this	assignment,	you	must

use	git	to	add,	commit	and	push	your	solution	to	your	repository	for	this	class.
successfully	pass	all	unit	tests	and	acceptance	tests

Additionally,	the	program	must	build,	run	and	give	correct	output.

Extra	Challenges	(Not	Required)
Create	functions	that	assign	numbers	to	many	grid	locations	at	the	same	time.	For	example,	you	could
make	boxes,	circles,	diamonds,	or	jack-o-lantern	faces	in	the	grid.

http://www.cplusplus.com/
http://computing.utahtech.edu/cs/3005/examples.php

