
CS	3005:	Programming	in	C++
Image	Class
Digital	images	are	rectangular	collections	of	pixels	stored	in	a	grid	layout.	Images	are	usually	stored	row	by
row,	starting	with	the	top	row.	Each	row	is	a	collection	of	pixels	(small	square	areas)	stored	from	left	to
right.	Each	pixel	is	often	stored	as	a	collection	of	three	numbers,	representing	how	much	red,	green,	and
blue	light	is	in	the	pixel.

The	location	of	a	single	number	in	the	image	is	identified	by	the	row	of	the	pixel	(how	far	from	the	top	of	the
image),	the	column	of	the	pixel	(how	far	from	the	left	of	the	image),	and	the	channel	of	the	number	(channel
just	means	red,	green,	or	blue).

Each	of	the	values	is	a	non-negative	(0	or	positive)	integer	describing	the	amount	of	that	primary	color	to
include	in	the	pixel’s	color.

A	channel	is	a	single	integer	value.	It	represents	how	much	of	that	color	is	in	a	pixel.

A	pixel	is	a	group	of	three	channels:	one	for	red,	one	for	green,	and	one	for	blue.

A	row	is	a	horizontal	group	of	pixels.	The	number	of	pixels	in	a	row	is	equal	to	the	width	of	the	image.

A	column	is	a	vertical	group	of	pixels.	They	are	not	adjacent	in	memory,	but	are	all	the	same	distance	from
the	left	of	the	image.

An	image	is	a	vertical	group	of	rows.	The	number	of	rows	in	an	image	is	equal	to	the	height	of	the	image.

A	one-dimensional	vector	stores	all	of	the	channels	for	an	image	in	a	line.	Organized	into	pixels	and	rows.

In	the	diagram	above,	notice	how	each	channel	is	located	in	the	vector.	In	the	document	below,	and	in	your
notes	from	class,	find	the	arithmetic	for	locating	a	channel	based	on	its	row,	column,	and	channel	number.

Assignment
In	this	assignment,	you	will	update	the	project	from	the	previous	assignment	by	adding	a	program	to	create
an	image	and	display	the	image	in	ASCII	(all	text)	characters.	In	order	to	complete	this	task,	you	will	be
required	to	create	an	 Image 	class	used	to	store	image	information	in	your	program,	and	a	few	more	functions
to	interact	with	the	user.

Potential	Session
This	is	an	example	of	what	the	program	may	look	like	to	a	user.

$./ascii_image	
Image	height?	40
Image	width?	80
																																							.;;;;;;;;;;;;;;;;;;;;;;;;++++++++++++++++
																																						..;;;;;;;;;;;;;;;;;;;;;;;+++++++++++++++++
																																					...;;;;;;;;;;;;;;;;;;;;;;++++++++++++++++++
																																			;;;;;;;;;;;;;;;;;;;;;+++++++++++++++++++
																																		;;;;;;;;;;;;;;;;;;;;++++++++++++++++++++

																																	;;;;;;;;;;;;;;;;;;;+++++++++++++++++++++
																																;;;;;;;;;;;;;;;;;;++++++++++++++++++++++
																															;;;;;;;;;;;;;;;;;+++++++++++++++++++++++
																														;;;;;;;;;;;;;;;;++++++++++++++++++++++++
																													;;;;;;;;;;;;;;;+++++++++++++++++++++++++
																												;;;;;;;;;;;;;;++++++++++++++++++++++++++
																											;;;;;;;;;;;;;+++++++++++++++++++++++++++
																										;;;;;;;;;;;;++++++++++++++++++++++++++++
																									;;;;;;;;;;;+++++++++++++++++++++++++++++
																								;;;;;;;;;;++++++++++++++++++++++++++++++
																							;;;;;;;;;+++++++++++++++++++++++++++++++
																						;;;;;;;;++++++++++++++++++++++++++++++++
																					;;;;;;;+++++++++++++++++++++++++++++++++
																				;;;;;;++++++++++++++++++++++++++++++++++
																			;;;;;+++++++++++++++++++++++++++++++++++
~~~~~~;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%##########
~~~~~;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%###########
~~~~;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;%%%%%%%%%%%%%%%%%%%%%%%%%%%%############
~~~;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;%%%%%%%%%%%%%%%%%%%%%%%%%%%#############
~~;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;%%%%%%%%%%%%%%%%%%%%%%%%%%##############
~;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;+%%%%%%%%%%%%%%%%%%%%%%%%%###############
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;++%%%%%%%%%%%%%%%%%%%%%%%%################
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;+++%%%%%%%%%%%%%%%%%%%%%%%#################
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;++++%%%%%%%%%%%%%%%%%%%%%%##################
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;+++++%%%%%%%%%%%%%%%%%%%%%###################
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;++++++%%%%%%%%%%%%%%%%%%%%####################
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;+++++++%%%%%%%%%%%%%%%%%%%#####################
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;++++++++%%%%%%%%%%%%%%%%%%######################
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;+++++++++%%%%%%%%%%%%%%%%%#######################
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;++++++++++%%%%%%%%%%%%%%%%########################
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;+++++++++++%%%%%%%%%%%%%%%#########################
;;;;;;;;;;;;;;;;;;;;;;;;;;;;++++++++++++%%%%%%%%%%%%%%##########################
;;;;;;;;;;;;;;;;;;;;;;;;;;;+++++++++++++%%%%%%%%%%%%%###########################
;;;;;;;;;;;;;;;;;;;;;;;;;;++++++++++++++%%%%%%%%%%%%############################
;;;;;;;;;;;;;;;;;;;;;;;;;+++++++++++++++%%%%%%%%%%%#############################
$	

Programming	Requirements
The	following	files	must	be	updated	or	created	and	stored	in	the	 src 	directory	of	your	repository.

Create	 Image.h
This	file	must	include	the	declaration	of	the	 Image 	class.

Image	Class	Data	Storage
The	Image	class	needs	to	store	3	integers	for	each	pixel	in	the	image.	There	are	 height 	rows	of	pixels	in	the
image,	and	each	row	holds	 width 	pixels.	That	is	a	total	of	 height 	times	 width 	times	3	integers	for	the	data
values.	One	way	to	store	this	many	values	is	to	have	a	 std::vector 	as	a	data	member,	that	is	 resize() ’d
when	 setWidth() 	or	 setHeight() 	is	called.

When	a	channel	is	set’d	or	get’d,	into	a	pixel	channel	identified	by	 row ,	 column 	and	 channel ,	the	index	into
the	vector	is	calculated	using	 (row	*	width	*	3	+	column	*	3)	+	channel .

The	class	will	also	need	data	members	for	width	and	height.

Image	Class	Methods
Your	 Image 	class	must	have	the	following	methods.

Image(); 	The	default	constructor.	A	default	Image	has	0	height	and	0	width.	The	data	vector	should	be
resized	to	fit	the	width	and	height.
Image(const	int&	height,	const	int&	width) ;	A	constructor	with	parameters	for	the	height	and	width.
The	data	members	should	be	set	according	to	theparameters.	The	data	vector	should	be	resized	to	fit
the	width	and	height.
int	getHeight()	const; 	Returns	the	height	of	the	Image.
int	getWidth()	const; 	Returns	the	width	of	the	Image.
bool	indexValid(const	int&	row,	const	int&	column,	const	int&	channel)	const; 	Checks	if	row,	column,
and	channel	are	all	within	the	legal	limits.	Returns	true	if	they	all	are,	and	false	otherwise.

int	index(const	int&	row,	const	int&	column,	const	int&	channel)	const; 	Returns	the	index	into	the
data	vector	for	the	location	specified	by	row,	column,	and	channel.
int	getChannel(const	int&	row,	const	int&	column,	const	int&	channel)	const; 	Returns	an	 int
representation	of	the	value	in	the	data	vector	at	the	location	specified	by	row,	column,	and	channel.
Channel	is	0,	1,	or	2	for	red,	green,	or	blue.	Uses	the	 index 	method.	Returns	-1	if	the	row,	column,	or
channel	is	not	valid.	Uses	the	 indexValid 	method	to	check.
void	setHeight(const	int&	height); 	Change	the	height	of	the	Image.	The	state	of	any	new	or	existing
pixels	after	this	call	is	undetermined.	Only	non-negative	values	of	 height 	should	be	accepted.	If	the
value	is	not	accepted,	make	no	changes.	If	a	change	is	made,	be	sure	to	resize	the	data	vector.
void	setWidth(const	int&	width); 	Change	the	width	of	the	Image.	The	state	of	any	new	or	existing
pixels	after	this	call	is	undetermined.	Only	non-negative	values	of	 width 	should	be	accepted.	If	the	value
is	not	accepted,	make	no	changes.	If	a	change	is	made,	be	sure	to	resize	the	data	vector.
void	setChannel(const	int&	row,	const	int&	column,	const	int&	channel,	const	int&	value); 	Change	the
value	of	the	location	specified	by	row,	column,	and	channel.	Only	store	if	the	row,	column,	and	channel
are	valid	(uses	 indexValid 	to	check).	If	any	of	these	is	not	valid,	no	changes	should	be	made.	Uses	the
index 	method	to	calculate	the	location.

Create	 Image.cpp
This	file	must	implement	all	of	the	methods	of	the	 Image 	class	declared	in	 Image.h .

Update	 image_menu.h
Add	the	following	function	declarations	to	the	file.	Don’t	forget	to	include	 Image.h 	in	this	file	too.

void	drawAsciiImage(std::istream&	is,	std::ostream&	os,	const	Image&	image);
void	diagonalQuadPattern(std::istream&	is,	std::ostream&	os,	Image&	image);
int	assignment2(std::istream&	is,	std::ostream&	os);

Create	 image_drawing.cpp
This	file	must	include	the	implementations	for	these	new	functions:

void	diagonalQuadPattern(std::istream&	is,	std::ostream&	os,	Image&	image) 	This	function	uses
getInteger 	to	ask	the	user	for	the	“Image	height?	”	and	“Image	width?	“.	It	then	configures	the	 image
with	the	specified	size.	Next,	the	function	assigns	values	to	the	image	according	to	the	following	rules:
The	top	half	of	the	image	have	a	red	channel	of	0.	The	bottom	half	have	a	red	channel	of	255.	The	left
half	of	the	image	has	a	blue	channel	of	0.	The	right	half	has	a	blue	channel	of	255.	The	green	channel	of
each	pixel	is	calculated	as	 (2*row	+	2*column)	%	256 .	The	top	half	of	the	image	is	described	by	those
rows	with	row	numbers	less	than	half	of	the	height.	All	other	rows	are	considered	to	be	the	bottom	half.
For	example,	if	the	image	height	is	8,	then	rows	0,1,2,3	are	the	top	half,	and	rows	4,5,6,7	are	the
bottom.	Note	that	8 ⁄2	is	4.	As	another	example,	if	the	image	height	is	7,	then	7 ⁄2	is	3.	That	makes	rows
0,1,2	the	top	half	and	rows	3,4,5,6	the	bottom	half.

Create	 image_output.cpp
This	file	must	include	the	implementations	for	these	new	functions:

void	drawAsciiImage(std::istream&	is,	std::ostream&	os,	const	Image&	image); 	This	function	will
display	a	rectangle	of	ASCII	(text)	characters	in	an	attempt	to	represent	the	strength	of	each	pixel.	The
strength	of	a	pixel	is	calculated	as	the	sum	of	the	red,	green,	and	blue	values	of	the	pixel,	divided	by
765.0 .	This	division,	and	its	result,	must	be	floating	point	values	(think	 double).	Depending	on	this	pixel
strength,	a	character	will	be	displayed	for	the	pixel.	 >=	1.0	->	@ ,	 >=	0.9	->	# ,	 >=	0.8	->	% ,	 >=	0.7	->
* ,	 >=	0.6	->	| ,	 >=	0.5	->	+ ,	 >=	0.4	->	; ,	 >=	0.3	->	~ ,	 >=	0.2	->	- ,	 >=	0.1	->	. ,	 >=	0.0	->	Space .
Display	each	row	of	the	image	as	a	line	of	text.	Display	all	rows	of	the	image.

Update	 controllers.cpp
Add	the	following	functions:

int	assignment2(std::istream&	is,	std::ostream&	os); 	Creates	an	 Image 	object.	Calls
diagonalQuadPattern 	to	configure	the	image.	Calls	 drawAsciiImage 	to	display	the	image.	Returns	0.

Create	 ascii_image.cpp
This	file	must	include	the	implementations	of	the	following	functions:

int	main(); 	This	function	should	call	 assignment2 ,	passing	in	 std::cin 	and	 std::cout 	as	the	input	and
output	streams	to	use.	This	function	should	return	what	 assignment2 	returns.

Update	 Makefile
This	file	must	now	also	include	the	rules	to	build	the	program	 ascii_image .	The	following	commands	should
work	correctly.

make	hello 	-	builds	the	hello	program
make	questions_3 	-	builds	the	questions_3	program
make	ascii_image 	-	builds	the	ascii_image	program
make 	-	builds	all	programs

Additional	Documentation
C++	Reference
Examples	from	class

Show	Off	Your	Work
To	receive	credit	for	this	assignment,	you	must

use	git	to	add,	commit	and	push	your	solution	to	your	repository	for	this	class.
successfully	pass	all	unit	tests	and	acceptance	tests

Additionally,	the	program	must	build,	run	and	give	correct	output.

http://www.cplusplus.com/
http://computing.utahtech.edu/cs/3005/examples.php

