
CS	3005:	Programming	in	C++
Musical	Staves
Introduction
In	this	assignment	you	will	add	a	collection	of	musical	staff	objects.	(The	plural	of	staff	is	staves.)	In	addition
you	will	add	commands	to	the	score	editor	to	add,	edit,	and	display	staves.	The	score	reader	and	score	writer
classes	will	also	be	updated	to	fully	support	staves.

Syntax	in	the	 .score 	file	for	staff
This	format	was	designed	to	be	read	using	the	C++	standard	library’s	 >> 	operator.	All	values	are
whitespace	delimited.	By	context,	your	code	should	be	able	to	determine	whether	the	next	value	is	a
std::string 	or	a	 double .

There	is	no	new	syntax	to	the	 .score 	file	format.	We	already	added	the	 STAFF 	in	the	previous	assignment.
This	assignment	will	make	it	so	the	score	reader	actually	keeps	each	staff	it	reads,	and	the	score	writer	will
write	out	all	of	the	staves	in	the	score.

Notes	on	the	 ScoreReader::readScore 	method
After	reading	the	staff	object,	add	it	to	the	staves	collection.

Notes	on	the	 ScoreWriter::writeScore 	method
After	writing	out	all	instruments,	write	out	all	staves.

Assignment
Here	are	the	new	commands	that	are	required	in	the	score	editor	program	for	this	assignment.	Previous
commands	are	still	required.

Command Prefixable? Function Description
score-staff-set-
instrument no setStaffInstrumentUI

Change	instrument	assigned	to	a	staff	in	the
score.

score-list-staves no listScoreStavesUI List	staves	in	the	score.
score-add-staff no addStaffUI Add	a	staff	to	the	score.
score-show-staff no showStaffUI Display	staff	details.
score-staff-add-note no addStaffNoteUI Add	a	note	to	a	staff.
score-render no renderScoreUI Render	score	to	wav	file.

Example	Session

$	./program-score-editor/score_editor	
Choice?	score-add-waveform
Waveform	name:	w1
Waveform	type:	sine
Amplitude:	1.0
Choice?	score-add-envelope
Envelope	name:	e1
Envelope	type:	AD
Maximum	amplitude:	1.0
Attack	seconds:	0.1
Choice?	score-add-instrument
Instrument	name:	i1
Waveform	name:	w1
Envelope	name:	e1
Choice?	score-add-staff
Staff	name:	s1
Instrument	name:	i1
Choice?	score-list-staves
s1	i1
Choice?	score-show-staff



Staff	name:	s1
s1	i1

Choice?	score-staff-add-note
Staff	name:	s1
Start:	0.5	
Duration:	q
Note:	C4
Choice?	score-show-staff
Staff	name:	s1
s1	i1
0.5	0.25	C4

Choice?	score-add-staff
Staff	name:	s2
Instrument	name:	i1
Choice?	score-staff-add-note
Staff	name:	s2
Start:	0.25
Duration:	h
Note:	G4
Choice?	score-show-staff
Staff	name:	s2
s2	i1
0.25	0.5	G4

Choice?	score-list-staves
s1	i1
s2	i1
Choice?	score-render
Filename:	foo.wav
Samples	per	second:	1000
Bits	per	sample:	16
Choice?	score-add-waveform
Waveform	name:	w2
Waveform	type:	square
Amplitude:	0.9
Choice?	score-add-instrument
Instrument	name:	i2
Waveform	name:	w2
Envelope	name:	e1
Choice?	score-staff-set-instrument
Staff	name:	s1
Instrument	name:	i2
Choice?	score-list-staves
s1	i2
s2	i1
Choice?	score-render
Filename:	bar.wav
Samples	per	second:	1000
Bits	per	sample:	16
Choice?	quit

Programming	Requirements
Create	 library-score/MusicalStaves.{h,cpp}
MusicalStaves 	Class
This	class	will	represent	a	collection	of	staff	objects,	with	the	key	being	the	name	of	the	staff	and	the	value
being	the	staff.

protected 	Data	Members:

std::map<std::string,	MusicalStaff>	mStaves; 	Map	of	staff	names	to	staff	objects.

public 	Methods:

MusicalStaves(); 	Does	nothing.
virtual	~MusicalStaves(); 	Empty	destructor.



void	addStaff(const	std::string&	name,	const	MusicalStaff&	staff); 	Uses	the	name	as	the	key	and	the
staff	as	the	value	to	store	in	the	map.
MusicalStaff&	getStaff(const	std::string&	name); 	If	name	is	a	key,	return	the	value	associated	with	that
key.	If	not,	return	a	statically	allocated	 MusicalStaff 	object.	This	is	similar	to	 MenuData::getAction
returning	a	static	object	if	the	key	is	not	valid.	Except,	this	is	more	simple	because	we	don’t	do	any
prefix	matching.
const	MusicalStaff&	getStaff(const	std::string&	name)	const; 	Const	version	of	 getStaff .
unsigned	int	size()	const; 	Returns	the	number	of	items	in	the	map.
typedef	std::map<std::string,	MusicalStaff>::iterator	iterator; 	Convenience	typedef	for	iterator.
typedef	std::map<std::string,	MusicalStaff>::const_iterator	const_iterator; 	Convenience	typedef	for
iterator.
iterator	begin(); 	Returns	the	beginning	iterator	of	the	map.
const_iterator	begin()	const; 	Returns	the	beginning	iterator	of	the	map.
iterator	end(); 	Returns	the	ending	iterator	of	the	map.
const_iterator	end()	const; 	Returns	the	ending	iterator	of	the	map.

Update	 library-score/MusicalScore.{h,cpp}
We	will	add	to	the	 MusicalScore 	class	by	adding	the	 MusicalStaves 	collection.

MusicalScore 	Class
This	class	will	store	all	of	the	information	for	a	piece	of	music.

Data	Members:

A	 MusicalStaves 	collection	object	for	storing	all	staff	objects	that	may	be	used	in	the	music.

public 	Methods:

MusicalScore(); 	Allow	the	 MusicalStaves 	object	to	be	default	constructed.
MusicalScore(const	TimeSignature&	time_signature,	const	double	tempo); 	Allow	the	 MusicalStaves 	object
to	be	default	constructed.
void	addStaff(const	MusicalStaff&	staff); 	Adds	staff	to	the	collection	of	staves,	using	the	staff’s	name
as	a	key.
MusicalStaff&	getStaff(const	std::string&	name); 	Returns	the	staff	object	with	the	given	name,	from	the
collection.
const	MusicalStaff&	getStaff(const	std::string&	name)	const; 	Returns	the	staff	object	with	the	given
name,	from	the	collection.
MusicalStaves&	getStaves(); 	Returns	the	data	member.
const	MusicalStaves&	getStaves()	const; 	Returns	the	data	member.
void	renderStaff(const	MusicalStaff&	staff,	const	int	samples_per_second,	AudioTrack&	track)	const;
Uses	the	 MusicalStaff 	 render 	method	to	render	the	staff	into	the	audio	track.
void	renderStaves(const	int	samples_per_second,	std::map<std::string,	AudioTrack>&	tracks)	const;
Renders	each	staff	into	a	track,	with	the	 renderStaff 	method.	Store	each	staff	in	the	map,	with	the	staff
name	as	the	key.
void	renderWavChannels(const	int	samples_per_second,	std::vector<AudioTrack>&	channels)	const; 	Uses
renderStaves 	to	render	all	staves	into	a	map	of	staves.	Then	adds	all	of	the	tracks	to	the	 channels
vector,	in	the	order	obtained	by	looping	over	the	map.

Update	 library-score-io/ScoreReader.{h,cpp}
We	will	update	the	 ScoreReader 	class	by	adding	the	ability	to	read	store	staves	it	reads.

ScoreReader 	Class
This	class	will	eventually	read	all	of	the	information	for	a	piece	of	music	from	the	 .score 	file	format.

Data	Members:

No	data	members	are	required.

public 	Methods:



void	readScore(std::istream&	input_stream,	MusicalScore&	score)	const; 	When	a	staff	is	read,	store	it	in
the	staves.

Update	 library-score-io/ScoreWriter.{h,cpp}
We	will	update	the	 ScoreWrite 	class	by	adding	the	ability	to	write	all	staves.

ScoreWriter 	Class
This	class	will	eventually	write	all	of	the	information	for	a	piece	of	music	from	the	 .score 	file	format.

Data	Members:

No	data	members	are	required.

public 	Methods:

void	writeScore(std::ostream&	os,	const	MusicalScore&	score)	const; 	After	the	instruments	have	been
written,	write	all	staves.

Create	 library-score-io/WavWriter.{h,cpp}
WavWriter 	Class
This	class	will	render	a	score	and	save	the	rendered	tracks	to	a	WAV	file.

protected 	Data	Members:

None

public 	Methods:

WavWriter(); 	Empty	constructor.
virtual	~WavWriter(); 	Empty	destructor.
void	writeWavFromScore(const	MusicalScore&	score,	const	int	samples_per_second,	const	int
bits_per_sample,	const	std::string&	wav_filename)	const; 	Uses	the	 renderWavChannels 	method	on	the
MusicalScore 	object	to	render	the	score	into	channels.	Uses	a	temporary	 WAVFile 	object	to	write	the
channels	to	a	file.

Update	 library-commands/score_editor_aux.{h,cpp}
Commands	created	for	the	score	editor	program	will	go	here.	We’ll	make	a	few	more	in	this	assignment.

Functions:
int	register_score_editor_commands(ApplicationData&	app_data); 	Update	to	add	the	new	commands
specified	for	this	assignment.
void	setStaffInstrumentUI(ApplicationData&	app); 	Change	the	instrument	assigned	to	a	staff	in	the	score.
See	example	formatting	above.
void	listScoreStavesUI(ApplicationData&	app); 	List	staves	in	the	score.	See	example	formatting	above.
void	addStaffUI(ApplicationData&	app); 	Add	a	staff	to	the	score.	See	example	formatting	above.
void	showStaffUI(ApplicationData&	app); 	Display	the	details	of	a	staff.	See	example	formatting	above.
void	addStaffNoteUI(ApplicationData&	app); 	Add	a	note	to	a	staff.	See	example	formatting	above.
void	renderScoreUI(ApplicationData&	app) 	Render	the	current	score	to	a	WAV	file.	Gathers	required
information	from	the	user.	Then	uses	a	temporary	 WavWriter 	object	to	write	a	WAV	file	based	on	the
score.	See	example	formatting	above.

Additional	Documentation

Grading	Instructions



To	receive	credit	for	this	assignment:

your	code	must	be	pushed	to	your	repository	for	this	class	on	GitHub
all	unit	tests	must	pass
all	acceptance	tests	must	pass
all	programs	must	build,	run,	and	execute	as	described	in	the	assignment	descriptions.

Extra	Challenges	(Not	Required)
TBA


