
CS	3005:	Programming	in	C++
Musical	Staff
Introduction
In	this	assignment	you	will	add	a	musical	staff	to	the	project.	The	musical	staff	will	consist	of	a	set	of	notes,
and	the	instrument	that	will	be	used	to	render	the	staff	into	an	audio	track.

There	will	also	be	some	updates	to	existing	classes,	and	the	addition	of	a	staff	note,	that	contains	the	note
information	we	have	already	created,	an	the	position	in	the	staff	where	the	note	begins.

Syntax	in	the	 .score 	file	for	staff
This	format	was	designed	to	be	read	using	the	C++	standard	library’s	 >> 	operator.	All	values	are
whitespace	delimited.	By	context,	your	code	should	be	able	to	determine	whether	the	next	value	is	a
std::string 	or	a	 double .

TBA

Sample	STAFF	record

STAFF	staff-name	instrument-name
		0	qC2
		0.25	wBb9
END-STAFF

Notes	on	the	 ScoreReader::readStaff 	method
Expects	an	empty	MusicalStaff	object	as	parameter.
STAFF 	keyword	has	already	been	read	when	called.
If	the	instrument	name	does	not	identify	a	valid	instrument	in	the	score,	immediately	return.
If	the	instrument	exists	in	the	score,	set	the	staff’s	name	and	instrument.
Until	 STAFF-END 	is	found,	or	end	of	file	is	found,	read	a	staff	note	and	add	it	to	the	staff.
A	staff	note	begins	with	a	number.	This	method	has	to	first	read	the	number	as	text,	and	if	it	is	not
equal	to	“END-STAFF”	it	will	need	to	convert	it	to	a	number.
The	note	duration	and	pitch	is	a	single	“word”	of	text	that	should	be	parsed	by	the	Note	class’	set
method.

Notes	on	the	 ScoreReader::readScore 	method
The	score	doesn’t	have	a	way	to	store	a	staff	yet,	but	the	 readScore 	method	should	still	recognize	the
STAFF 	keyword,	and	call	 readStaff 	to	do	the	rest	of	the	work.

Notes	on	the	 ScoreWriter::getDurationLetter 	method
This	method	translates	a	number	into	a	string	that	represents	the	duration	of	a	note	in	the	score.
The	table	below	specifies	the	numbers	and	strings	they	correspond	to.
Since	floating	point	numbers	are	difficult	to	be	exact,	the	number	that	most	closely	matches	is	the	one
that	should	be	select.

Number String
1.0/16.0 “s”
1.0/8.0 “e”
1.0/4.0 “q”
1.0/2.0 “h”
1.0/1.0 “w”

Notes	on	the	 ScoreWriter::formatNote 	method
Converts	the	note’s	duration	to	a	string	and	concatenates	that	with	the	note’s	name.



Notes	on	the	 ScoreWriter::writeStaffNote 	method
Each	note	is	on	its	own	line,	with	4	leading	spaces.
The	note	duration	and	pitch	string	is	generated	by	the	 formatNote 	method.

Notes	on	the	 ScoreWriter::writeStaff 	method
STAFF 	is	indented	by	2	spaces.
The	staff	name	and	instrument	name	are	on	the	same	line	as	 STAFF ,	with	single	spaces	between	them.
Each	note	is	written	by	calling	the	 writeStaffNote 	method.
STAFF-END 	is	indented	by	2	spaces,	and	followed	by	a	blank	line.

Notes	on	MusicalStaff::getDurationInWholeNotes
The	end	of	a	note	is	computed	as	the	beginning	of	the	note,	plus	the	duration	of	the	note.
Finds	the	largest	end	of	any	note	in	the	staff.
Returns	the	largest	end.

Notes	on	MusicalStaff::render
Converting	times	that	are	in	whole	notes	to	seconds	requires	multiplying	by	the	seconds	per	whole	note.

Seconds	per	whole	note	is	computed	from	the	time	signature’s	beat	value	*	60.0	/	the	tempo.

Configures	a	track	to	store	the	whole	staff’s	notes.

The	track’s	samples_per_seconds	is	taken	from	the	parameter.

The	track’s	duration	is	computed	using	the	duration	in	whole	notes,	multiplied	by	the	seconds	per	whole
note.

For	each	note	in	the	staff,	uses	the	instrument’s	 generateSamples 	to	fill	a	temporary	audio	track.

The	frequency	is	found	from	the	note.

The	duration	in	whole	notes	is	found	from	the	note.

The	start	of	the	note	in	whole	notes	is	found	from	the	staff	note.

Adds	the	temporary	audio	track	to	the	main	audio	track	with	the	 addAt 	method.	The	second	parameter
to	this	method	is	the	start	time	of	the	note,	in	seconds.	Since	 StaffNote 	stores	the	start	time	in	whole
notes,	this	needs	to	be	multiplied	by	seconds	per	whole	note	to	get	the	start	time	in	seconds.

Assignment
Here	are	the	new	commands	that	are	required	in	the	score	editor	program	for	this	assignment.	Previous
commands	are	still	required.

Command Prefixable? Function Description

TBA

Example	Session

$	./program-score-editor/score_editor	
TBA
Choice?	quit

The	output	file:	demo.score.

Programming	Requirements
Update	 library-audiofiles/AudioTrack.{h,cpp}
We	will	add	to	the	 AudioTrack 	class	by	allowing	it	to	add	values	from	another	 AudioTrack 	object,	at	a	given
position	in	the	track.	This	is	the	basic	operation	that	will	allow	us	to	make	an	audio	track	from	multiple
notes.

https://www.cs.utahtech.edu/cs/3005/assignments.wav_wizard/assignment_26_staff/demo.score


AudioTrack 	Class
This	class	stores	digital	audio	information	for	one	track	of	sound.

Data	Members:

No	changes.

public 	Methods:

void	addAt(const	AudioTrack&	other_track,	double	offset_seconds); 	Adds	the	audio	data	from	 other_track
starting	at	position	 offset_seconds 	seconds	in	the	track.	This	is	additive.	Whatever	value	is	already	at
these	positions,	is	added	to.

Create	 library-score/StaffNote.{h,cpp}
StaffNote 	Class
This	class	will	represent	a	note	in	a	staff,	including	the	position	in	the	staff	when	the	note	begins.

protected 	Data	Members:

A	 Note 	object.
A	 double 	the	number	of	whole	notes	since	the	beginning	of	the	staff	that	this	note	begins.

public 	Methods:

StaffNote(); 	defaults	to	default	Note	and	0.0	start
StaffNote(const	Note&	note,	const	double	start); 	Initializes	data	members	from	parameters
Note&	getNote(); 	Return	the	data	member.
const	Note&	getNote()	const; 	Return	the	data	member.
double	getStart()	const; 	Return	the	data	member.
void	setStart(const	double	start); 	Update	the	data	member,	but	only	if	the	new	values	is	non-negative.

Free	Functions:

std::ostream&	operator<<(std::ostream&	os,	const	StaffNote&	staff_note) 	Sends	the	note	information	to
the	stream.	Format	is	“start	note_name	note_duration”.

Create	 library-score/MusicalStaff.{h,cpp}
MusicalStaff 	Class
This	class	will	represent	a	staff,	with	an	instrument	and	a	list	of	staff	notes.

protected 	Data	Members:

std::string 	The	name	of	the	staff.
std::shared_ptr<Instrument> 	The	instrument	used	to	render	the	notes	to	an	audio	track.
std::vector<StaffNote> 	The	notes	of	the	staff.

public 	Methods:

MusicalStaff(); 	defaults	to	empty	name,	nullptr	for	Instrument,	and	no	notes
MusicalStaff(std::shared_ptr<Instrument>	instrument); 	empty	name	and	no	notes,	parameter	used	to
initialize	Instrument
MusicalStaff(const	std::string&	name,	std::shared_ptr<Instrument>	instrument); 	no	notes,	parameters
initialize	name	and	Instrument
MusicalStaff(const	MusicalStaff&	src); 	copy	all	data	members	from	src.
virtual	~MusicalStaff(); 	Required,	needs	empty	block	of	code.
MusicalStaff&	operator=(const	MusicalStaff&	rhs)	=	default; 	Required.	Note	the	implementation	is



supplied	by	the	compiler.
virtual	std::string	toString()	const; 	Formats	for	printing.	Format	is	“name_of_staff
name_of_instrument”.
const	std::string&	getName()	const; 	Return	the	data	member.
void	setName(const	std::string&	name); 	Update	the	data	member.
std::shared_ptr<Instrument>	getInstrument(); 	Return	the	data	member.
std::shared_ptr<const	Instrument>	getInstrument()	const; 	Return	the	data	member.
void	setInstrument(std::shared_ptr<Instrument>	instrument); 	Update	the	data	member.
void	addNote(const	StaffNote&	note); 	Add	the	note	to	the	end	of	the	notes.
const	std::vector<StaffNote>&	getNotes()	const; 	Return	the	data	member.
double	getDurationInWholeNotes()	const; 	Computes	the	end	of	the	last	note	to	finish,	in	whole	notes.	This
is	not	necessarily	the	last	note	in	the	list.	Finish	time	is	the	start	time	plus	duration.
void	render(const	TimeSignature&	time_signature,	const	double	tempo,	const	int	samples_per_second,
AudioTrack&	track)	const; 	Renders	the	staff	into	digital	sound,	in	the	audio	track.	Basic	idea:	create	an
audio	track	that	is	long	enough	to	hold	the	whole	staff.	For	every	note,	use
Instrument::generateSamples	to	fill	a	temporary	audio	track	with	samples.	Then,	add	the	temporary
audio	track	to	the	aggregator	audio	track,	at	the	correct	position.

Free	Functions:

std::ostream&	operator<<(std::ostream&	output_stream,	const	MusicalStaff&	staff); 	Uses
MusicalStaff::toString() 	to	send	the	string	representation	to	the	output	stream.

Update	 library-score-io/ScoreReader.{h,cpp}
We	will	update	the	 ScoreReader 	class	by	adding	the	ability	to	read	a	staff.

ScoreReader 	Class
This	class	will	eventually	read	all	of	the	information	for	a	piece	of	music	from	the	 .score 	file	format.

Data	Members:

No	data	members	are	required.

public 	Methods:

void	readScore(std::istream&	input_stream,	MusicalScore&	score)	const; 	Add	the	ability	to	recognize	the
STAFF	keyword	and	call	 readStaff() .	Does	not	yet	keep	the	staff.
void	readStaff(std::istream&	is,	MusicalScore&	score,	MusicalStaff&	staff)	const; 	Reads	the	entire	staff
from	the	input	stream.	See	the	description	above.

Update	 library-score-io/ScoreWriter.{h,cpp}
We	will	update	the	 ScoreWrite 	class	by	adding	the	ability	to	write	a	staff.

ScoreWriter 	Class
This	class	will	eventually	write	all	of	the	information	for	a	piece	of	music	from	the	 .score 	file	format.

Data	Members:

No	data	members	are	required.

public 	Methods:

void	writeStaff(std::ostream&	os,	const	MusicalScore&	score,	const	MusicalStaff&	staff)	const; 	Write	a
staff	object	to	the	output	stream	in	the	format	specified	in	the	 .score 	file	format.
void	writeStaffNote(std::ostream&	os,	const	MusicalScore&	score,	const	StaffNote&	staff_note)	const;
Write	individual	note	information	to	the	output	stream	in	the	format	specified	in	the	 .score 	file	format.
std::string	getDurationLetter(const	double	duration)	const; 	Given	the	floating	point	duration	of	a	note
in	fractions	of	a	whole	note,	return	a	string	representing	that	duration.	See	the	table	of	notes	above.
std::string	formatNote(const	Note&	note)	const; 	Given	the	note	object,	format	the	note	for	writing	to	the



output	stream	in	the	format	specified	in	the	 .score 	file	format.

Additional	Documentation

Grading	Instructions
To	receive	credit	for	this	assignment:

your	code	must	be	pushed	to	your	repository	for	this	class	on	GitHub
all	unit	tests	must	pass
all	acceptance	tests	must	pass
all	programs	must	build,	run,	and	execute	as	described	in	the	assignment	descriptions.

Extra	Challenges	(Not	Required)
TBA


