
CS	3005:	Programming	in	C++
Score	Editor	(Writer)
Introduction
In	this	assignment	you	will	start	the	ability	to	write	score	files	from	the	score	editor	program.	This	will	be
apparent	to	users	through	a	new	command.

We	will	also	add	support	for	instruments	to	the	score	editor	program.	This	includes	user	commands	to	add,
edit,	and	list	instruments.	It	also	includes	additions	to	reading	and	writing	score	files	that	that	have
instruments.

Future	assignments	will	continue	to	add	functionality	to	the	program.

Syntax	in	the	 .score 	file	for	an	instrument
This	format	was	designed	to	be	read	using	the	C++	standard	library’s	 >> 	operator.	All	values	are
whitespace	delimited.	By	context,	your	code	should	be	able	to	determine	whether	the	next	value	is	a
std::string 	or	a	 double .

The	INSTRUMENT	keyword	must	always	be	followed	by	the	instrument	name.

The	INSTRUMENT	description	must	always	contain	a	WAVEFORM	and	an	ENVELOPE.	These	may	be
complete	descriptions	of	new	waveforms	and	envelopes,	or	they	may	be	a	identifiers	for	a	waveform	and	an
envelope	that	have	previously	been	described.	“Previously	described”	means	it	has	been	already	added	to
the	score.	This	can	happen	because	the	waveform	or	envelope	was	described	in	an	earlier	INSTRUMENT
description,	or	it	was	described	earlier	in	the	file,	outside	of	an	instrument,	or	it	was	added	to	the
MusicalScore 	object	before	the	score	file	was	read.

INSTRUMENT	with	full	Waveform	and	Envelope	descriptions

INSTRUMENT	piano-left
		WAVEFORM	piano-sawtooth	sawtooth
				AMPLITUDE	0.87
		WAVEFORM-END

		ENVELOPE	piano-adsr	ADSR
				MAXIMUM-AMPLITUDE	0.25
				ATTACK-SECONDS	0.01
				DECAY-SECONDS	0.02
				SUSTAIN-AMPLITUDE	0.5
				RELEASE-SECONDS	0.03
		ENVELOPE-END

INSTRUMENT-END

INSTRUMENT	with	minimal	Waveform	and	Envelope	descriptions

INSTRUMENT	piano-right
		WAVEFORM	piano-sine	sine
		WAVEFORM-END

		ENVELOPE	piano-ad	AD
		ENVELOPE-END

INSTRUMENT-END

Sample	SCORE	file

SCORE

				WAVEFORM	piano-square	square
						AMPLITUDE	0.77



				WAVEFORM-END

				WAVEFORM	piano-sawtooth	sawtooth
						AMPLITUDE	0.87
				WAVEFORM-END

				ENVELOPE	piano-ar	AR
						ATTACK-SECONDS	0.02
						SUSTAIN-AMPLITUDE	0.75
						RELEASE-SECONDS	0.03
				ENVELOPE-END

				ENVELOPE	piano-adsr	ADSR
						ATTACK-SECONDS	0.01
						DECAY-SECONDS	0.02
						SUSTAIN-AMPLITUDE	0.5
						RELEASE-SECONDS	0.03
				ENVELOPE-END

		INSTRUMENT	piano-right
				WAVEFORM	piano-square	square
						AMPLITUDE	0.77
				WAVEFORM-END

				ENVELOPE	piano-ar	AR
						ATTACK-SECONDS	0.02
						SUSTAIN-AMPLITUDE	0.75
						RELEASE-SECONDS	0.03
				ENVELOPE-END

		INSTRUMENT-END

		INSTRUMENT	piano-left
				WAVEFORM	piano-sawtooth	sawtooth
						AMPLITUDE	0.87
				WAVEFORM-END

				ENVELOPE	piano-adsr	ADSR
						ATTACK-SECONDS	0.01
						DECAY-SECONDS	0.02
						SUSTAIN-AMPLITUDE	0.5
						RELEASE-SECONDS	0.03
				ENVELOPE-END

		INSTRUMENT-END

SCORE-END

Notes	on	the	 ScoreReader::readInstrument 	method
The	method	is	called	after	the	 INSTRUMENT 	keyword	has	been	read,	so	it	will	start	reading	the	name.
If	the	instrument	name	refers	to	an	instrument	already	existing	in	the	score,	the	method	still	needs	to
read	until	the	 INSTRUMENT-END 	keyword,	but	it	should	not	make	any	changes	to	the	existing	instrument.
If	the	instrument	name	does	not	exist	in	the	score,	and	valid	wavform	and	envelope	descriptions	are
encountered,	the	method	should	use	 make_shared 	to	create	a	new	one,	and	add	it	to	the	score.
When	 ENVELOPE 	or	 WAVEFORM 	keywords	are	encountered,	the	method	should	call	the	appropriate	method
in	the	 ScoreReader 	object,	receiving	the	return	value	to	use	in	the	creation	of	the	instrument.
If	input	processing	ends	without	a	 INSTRUMENT-END 	keyword,	the	method	should	return	a	null	pointer,	not
adding	an	instrument	to	the	score.
If	input	processing	ends	without	a	valid	waveform	or	without	a	valid	envelope,	the	method	should	return
a	null	pointer,	not	adding	an	instrument	to	the	score.
Any	word	that	is	read	in	a	position	that	should	be	a	keyword,	but	is	not	a	recognized	keyword,	should
cause	the	instrument	to	not	be	added	to	the	score.	The	method	should	return	a	null	pointer	immediately
if	this	happens.
If	the	ending	keyword	is	not	found	before	the	end	of	the	input	stream,	the	instrument	should	not	be
added	to	the	score.
Under	normal	operation,	the	method	returns	the	instrument	pointer,	whether	it	is	a	new	pointer	that	has
been	added	to	the	score,	or	it	is	an	already	existing	instrument	in	the	score.
If	an	error	occurs,	such	as	reading	non-keyword	or	end	of	input	stream	without	ending	keyword,	the
method	should	return	a	null	pointer.



Notes	on	the	 ScoreWriter::writeScore 	method
The	SCORE	and	SCORE-END	keywords	are	at	the	beginning	of	their	lines.
All	waveforms,	envelopes,	and	instruments	should	be	written	in	their	container	order,	as	defined	by	the
iterator.
Writing	the	items	should	be	accomplished	by	calling	the	specific	method.

Notes	on	the	 ScoreWriter::writeInstrument 	method
The	INSTRUMENT	and	INSTRUMENT-END	keywords	have	2	leading	spaces.
Writing	the	waveform	and	envelope	should	be	accomplished	by	calling	the	specific	methods	for	each.

Notes	on	the	 ScoreWriter::writeWaveform 	method
The	WAVEFORM	and	WAVEFORM-END	keywords	have	4	leading	spaces.
The	attribute	keywords	inside	the	waveform	have	6	leading	spaces.
All	relevant	attributes	should	be	written	in	the	order	they	are	configured	in	the	UI	functions.

Notes	on	the	 ScoreWriter::writeEnvelope 	method
The	ENVELOPE	and	ENVELOPE-END	keywords	have	4	leading	spaces.
The	attribute	keywords	inside	the	envelope	have	6	leading	spaces.
All	relevant	attributes	should	be	written	in	the	order	they	are	configured	in	the	UI	functions.

Assignment
Here	are	the	new	commands	that	are	required	for	this	assignment.	Previous	commands	are	still	required.

Command Prefixable? Function Description
score-write no writeScoreUI Write	score	to	score	file.
score-list-instruments no listScoreInstrumentsUI List	instruments	in	the	score.
score-add-instrument no addScoreInstrumentUI Add	instrument	to	the	score.
score-edit-instrument no editScoreInstrumentUI Edit	instrument	in	the	score.

Example	Session

$	./program-score-editor/score_editor	
Choice?	menu
Options	are:
		#	-	Skip	to	end	of	line	(comment).
		comment	-	Skip	to	end	of	line	(comment).
		echo	-	Echo	back	the	arguments	given.
		help	-	Display	help	message.
		menu	-	Display	help	message.
		quit	-	Terminate	the	program.
		score-add-envelope	-	Add	envelope	to	the	score.
		score-add-instrument	-	Add	instrument	to	the	score.
		score-add-waveform	-	Add	waveform	to	the	score.
		score-edit-envelope	-	Edit	envelope	in	the	score.
		score-edit-instrument	-	Edit	instrument	in	the	score.
		score-edit-waveform	-	Edit	waveform	in	the	score.
		score-list-envelopes	-	List	envelopes	in	the	score.
		score-list-instruments	-	List	instruments	in	the	score.
		score-list-waveforms	-	List	waveforms	in	the	score.
		score-read	-	Read	score	from	file.
		score-write	-	Write	score	to	score	file.

Choice?	score-add-waveform
Waveform	name:	sin1
Waveform	type:	sine
Amplitude:	0.80
Choice?	score-add-waveform
Waveform	name:	squ2
Waveform	type:	square
Amplitude:	0.82
Choice?	score-add-envelope
Envelope	name:	ad1



Envelope	type:	AD
Maximum	amplitude:	0.75
Attack	seconds:	0.011
Choice?	score-add-envelope
Envelope	name:	adsr4
Envelope	type:	ADSR
Maximum	amplitude:	0.78
Attack	seconds:	0.016
Decay	seconds:	0.017
Sustain	amplitude:	0.57
Release	seconds:	0.018
Choice?	score-add-instrument
Instrument	name:	ins1
Waveform	name:	sin1
Envelope	name:	ad1
Choice?	score-add-instrument
Instrument	name:	ins2
Waveform	name:	squ2
Envelope	name:	adsr4
Choice?	score-list-instruments
ins1	:	sin1	ad1
ins2	:	squ2	adsr4
Choice?	score-edit-instrument
Instrument	name:	ins1
Waveform	name:	squ2
Envelope	name:	ad1
Choice?	score-edit-instrument
Instrument	name:	ins2
Waveform	name:	squ2
Envelope	name:	ad1
Choice?	score-list-instruments
ins1	:	squ2	ad1
ins2	:	squ2	ad1
Choice?	score-write
Filename:	demo.score
Choice?	quit

The	output	file:	demo.score.

Programming	Requirements
Update	 library-score/MusicalScore.{h,cpp}
We	will	add	to	the	 MusicalScore 	class	by	adding	the	 Instrumentarium 	collection.	Future	assignments	will	add
more	to	the	class.

MusicalScore 	Class
This	class	will	store	all	of	the	information	for	a	piece	of	music.

Data	Members:

An	 Instrumentarium 	collection	object	for	storing	all	instruments	that	may	be	used	in	the	music.

public 	Methods:

MusicalScore(); 	Allow	the	 Instrumentarium 	object	to	be	default	constructed.	Should	not	require	any
changes.
Instrumentarium&	getInstrumentarium(); 	Return	the	data	member.
const	Instrumentarium&	getInstrumentarium()	const; 	Return	the	data	member.

Update	 library-score-io/ScoreReader.{h,cpp}
We	will	update	the	 ScoreReader 	class	by	adding	the	ability	to	read	 Instrument 	objects.	Future	assignments
will	add	more	to	the	class.

ScoreReader 	Class

https://www.cs.utahtech.edu/cs/3005/assignments.wav_wizard/assignment_24_score_writer/demo.score


This	class	will	eventually	read	all	of	the	information	for	a	piece	of	music	from	the	 .score 	file	format.

Data	Members:

No	data	members	are	required.

public 	Methods:

void	readScore(std::istream&	input_stream,	MusicalScore&	score)	const; 	Add	the	ability	to	recognize	the
INSTRUMENT	keyword,	and	call	 readInstrument() 	to	read	the	instrument.
std::shared_ptr<Instrument>	readInstrument(std::istream&	is,	MusicalScore&	score)	const; 	This	method
reads	an	instrument	formatted	with	the	format	described	above.

Create	 library-score-io/ScoreWriter.{h,cpp}
We	will	create	the	 ScoreWriter 	class	with	the	ability	to	write	the	currently	existing	score	elements.	Future
assignments	will	add	more	to	the	class.

ScoreWriter 	Class
This	class	will	eventually	write	all	of	the	information	for	a	piece	of	music	from	the	 .score 	file	format.

Data	Members:

No	data	members	are	required.

public 	Methods:

ScoreWriter(); 	Empty,	nothing	to	initialize.
virtual	~ScoreWriter(); 	Required	but	empty	body.
void	writeScore(std::ostream&	output_stream,	const	MusicalScore&	score)	const; 	Write	the	SCORE	and
SCORE-END	keywords	to	the	output	stream,	along	with	the	waveforms,	envelopes	and	instruments.	Uses
specific	methods	to	write	individual	items.
void	writeInstrument(std::ostream&	output_stream,	const	MusicalScore&	score,	const	Instrument&
instrument)	const; 	Writes	an	instrument	to	the	output	stream.	Note	the	file	format	examples	above.
Uses	other	methods	to	write	individual	items.
void	writeWaveform(std::ostream&	output_stream,	const	MusicalScore&	score,	const	Waveform&	waveform)
const; 	Writes	a	waveform	to	the	output	stream.	Note	the	file	format	examples	above.
void	writeEnvelope(std::ostream&	output_stream,	const	MusicalScore&	score,	const	Envelope&	envelope)
const; 	Writes	an	envelope	to	the	output	stream.	Note	the	file	format	examples	above.

Update	 library-commands/score_editor_aux.{h,cpp}
Commands	created	for	the	score	editor	program	will	go	here.	We’ll	make	a	few	in	this	assignment,	and	add
more	in	future	assignments.

Functions:
int	register_score_editor_commands(ApplicationData&	app_data); 	Update	to	add	the	new	commands
specified	for	this	assignment.
void	writeScoreUI(ApplicationData&	app); 	Asks	the	user	for	a	filename,	opens	it	as	an	output	file	stream,
and	uses	a	temporary	 ScoreWriter 	object	to	write	the	score	to	the	file.	If	the	file	fails	to	open,	an	error
message	is	displayed.	See	formatting	examples	above.
void	listScoreInstrumentsUI(ApplicationData&	app); 	Display	the	list	of	instruments	in	the	score.	See
formatting	examples	above.
void	addScoreInstrumentUI(ApplicationData&	app); 	Add	an	instrument	to	the	score.	See	formatting
examples	above.
void	editScoreInstrumentUI(ApplicationData&	app); 	Edit	an	instrument	in	the	score.	See	formatting
examples	above.

Additional	Documentation
None



Grading	Instructions
To	receive	credit	for	this	assignment:

your	code	must	be	pushed	to	your	repository	for	this	class	on	GitHub
all	unit	tests	must	pass
all	acceptance	tests	must	pass
all	programs	must	build,	run,	and	execute	as	described	in	the	assignment	descriptions.

Extra	Challenges	(Not	Required)
TBA


