
CS	3005:	Programming	in	C++
Menu	System
Introduction
We	want	to	have	a	text	based	menu	system	that	allows	the	user	to	execute	commands	from	a	list	of
commands.	Each	command	will	manipulate	the	data	stored	in	the	program.

Assignment
In	this	assignment,	you	will	add	to	the	 ApplicationData 	class,	and	create	some	new	classes	that	support	a
menu	system.	You	will	also	build	a	very	simple	program	to	test	this	menu	system.

The	commands	this	program	will	have	are	listed	in	this	table.

Command Prefixable? Function Description
help no menuUI Display	help	message.
menu no menuUI Display	help	message.
# yes commentUI Skip	to	end	of	line	(comment).
comment no commentUI Skip	to	end	of	line	(comment).
echo no echoUI Echo	back	the	arguments	given.
quit no quitUI Terminate	the	program.

Command	indicates	the	command	the	user	types	to	request	the	command.
Prefixable?	indicates	if	the	command	should	be	searched	for	as	a	prefix	(the	first	characters)	of	the
command	typed.
Function	indicates	the	function	that	the	command	will	call	when	it	is	executed.
Description	indicates	the	description	of	the	command.

Example	Session

$./program-menu-test/menu_test	
Choice?	#	this	is	a	comment,	it	does	nothing.
Choice?	#this	is	a	comment,	where	the	command	name	is	a	prefix	of	the	command	typed.
Choice?	comment	this	is	a	comment	using	the	command	name,	not	#
Choice?	commentthis	is	a	bad	comment,	because	the	"comment"	command	can	not	be	a	prefix.
Unknown	action	'commentthis'.	Use	'help'	for	a	list	of	valid	actions
Choice?	echo	Hello	world!
	Hello	world!
Choice?	echo	"Hello	world!"
	"Hello	world!"
Choice?	echo	copies	everything	after	the	echo	command	to	the	output.
	copies	everything	after	the	echo	command	to	the	output.
Choice?	echo	help	will	show	the	list	of	available	commands
	help	will	show	the	list	of	available	commands
Choice?	help
Options	are:
		#	-	Skip	to	end	of	line	(comment).
		comment	-	Skip	to	end	of	line	(comment).
		echo	-	Echo	back	the	arguments	given.
		help	-	Display	help	message.
		menu	-	Display	help	message.
		quit	-	Terminate	the	program.

Choice?	echo	menu	does	too
	menu	does	too
Choice?	menu
Options	are:
		#	-	Skip	to	end	of	line	(comment).
		comment	-	Skip	to	end	of	line	(comment).
		echo	-	Echo	back	the	arguments	given.
		help	-	Display	help	message.
		menu	-	Display	help	message.
		quit	-	Terminate	the	program.

Choice?	quit

A	Note	on	Comments
See	the	additional	documentation	below	on	script	files.

When	people	write	comments	with	the	 # 	command,	sometimes	they	will	write	with	a	space	after	the	hash,
like	this:

#	COMMENT	HERE

However,	sometimes,	people	write	comments	without	a	leading	space,	like	this:

#LAZY	COMMENT	HERE

When	reading	a	command,	our	menu	system	will	use	white	space	(spaces,	tabs,	newlines)	as	word
separators.	In	the	first	case,	the	 # 	symbol	is	followed	by	a	space,	so	it	will	be	considered	as	a	command
name.	We	can	then	let	the	comment	command	handle	the	rest	of	the	input	line.

In	the	second	case,	the	first	space	comes	after	 #LAZY ,	so	that	is	the	command	name.	But	 #LAZY 	is	not	in	our
command	list.	If	we	don’t	do	something	about	this,	the	program	will	say	that	is	an	unknown	command,	then
try	to	read	the	next	word	as	a	command,	 COMMENT 	is	also	not	a	command,	so	we	get	another	error	message.
HERE 	is	also	not	a	command,	so	we	get	yet	another	error	message.

So,	let’s	do	something	about	it.	We	will	tag	the	 # 	command	in	our	command	list	as	a	prefix	command	of
length	1.	When	we	scan	to	see	if	a	user	typed	command	is	in	the	list	of	commands,	if	the	first	character
(because	length	is	1),	matches	the	command	name	 # ,	we	will	consider	it	a	 # 	command.	This	way	 #LAZY 	is
considered	an	alias	for	the	 # .

Commands	that	are	not	meant	to	function	as	prefix	commands	are	will	have	a	prefix	length	of	0	to	indicate
that	they	are	not	a	prefix	command.

A	Note	on	Reference	Returns
If	a	function	returns	a	reference	(&),	the	object	being	referenced	must	exist	after	the	function	ends.

Often,	we	use	reference	return	types	for	a	method	of	a	class,	when	the	method	is	returning	a	data	member,
or	an	element	of	a	data	member	container.	For	example,	we	might	return	a	reference	to	the	value	in	a	data
member	map	associated	with	a	key	sent	as	a	parameter.

A	problem	arises	if	the	item	the	function	has	been	asked	to	return	does	not	exist.	In	this	case,	we	still	need
to	return	a	reference,	or	the	function	does	not	have	valid	syntax.

We	could	create	a	local	variable	on	the	stack	to	return,	representing	the	error	case.	This	is	not	correct.
Remember	all	stack	variables	are	removed	as	soon	as	the	function	returns.	So,	the	reference	would	be	to	an
object	that	no	loner	exists.

The	solution	is	to	create	a	variable	that	is	locally	scoped,	but	stored	in	the	 static 	section	of	memory.	It	will
continue	to	exist	after	the	function	returns.

A	Note	on	Clearing	to	EOL
See	class	discussion.

A	Note	on	Input	Streams
See	class	discussion.

Programming	Requirements
Create	 library-application/ActionFunctionData.{h,cpp}
ActionFunctionData 	Class
This	class	represents	one	command,	or	action,	that	the	user	can	execute.	Think	of	it	as	a	row	in	the	table	of
commands	listed	above.

public 	Typedefs:

typedef	void	(*ActionFunctionType)(ApplicationData&); 	Creates	the	 ActionFunctionType .

Data	Members:

The	following	data	members	should	be	 private 	or	 protected .	 public 	data	members	are	not	allowed.

std::string 	name	for	the	command.	This	is	the	command	the	user	types	to	execute	it.
ActionFunctionType 	the	function	that	is	called	when	the	user	types	the	command.
std::string 	the	command	description	given	to	the	user	when	they	ask	for	help.
int 	the	length	of	the	prefix.	 0 	if	the	command	is	not	allowed	to	be	a	prefix.

public 	Methods:

ActionFunctionData(); 	Default	constructor,	initializes	all	data	members	to	 "" 	and	 0 	as	appropriate.
ActionFunctionData(const	std::string&	name,	const	ActionFunctionType&	function,	const	std::string&
description); 	Initializes	all	data	members	to	the	given	arguments,	expect	 prefix_length 	which	is	set	to
0 .
ActionFunctionData(const	std::string&	name,	const	ActionFunctionType&	function,	const	std::string&
description,	const	int	prefix_length); 	Initializes	all	data	members	to	the	given	argument.
const	std::string&	getName()	const; 	Returns	the	data	member.
ActionFunctionType	getFunction()	const; 	Returns	the	data	member.
const	std::string&	getDescription()	const; 	Returns	the	data	member.
int	getPrefixLength()	const; 	Returns	the	data	member.
void	setName(const	std::string&	name); 	Sets	the	data	member.
void	setFunction(ActionFunctionType	function); 	Sets	the	data	member.
void	setDescription(const	std::string&	description); 	Sets	the	data	member.
void	setPrefixLength(const	int	length); 	Sets	the	data	member.

Update	 library-application/Makefile
Add	 ActionFunctionData.{h,cpp} 	in	the	appropriate	places	to	add	them	to	the	library	and	install	the	header
file.	Unless,	of	course,	you	have	adopted	the	updated	 Makefile 	setup	we	built	in	class.

Create	 library-application/MenuData.{h,cpp}
MenuData 	Class
This	class	represents	all	of	the	commands	the	user	can	execute.	Think	of	it	as	all	of	the	rows	in	the	table	of
commands	listed	above.

Data	Members:

The	following	data	members	should	be	 private 	or	 protected .	 public 	data	members	are	not	allowed.

std::map<std::string,	ActionFunctionData> 	A	map	of	command	names	to	the	action	function	data	for	the
command.

protected 	Methods:

These	methods	must	be	protected,	not	public,	and	not	private.

bool	actionExistsAux(const	std::string&	name)	const; 	If	 name 	is	a	key	in	the	map,	return	true.	Otherwise
return	false.
const	std::string	actionPrefix(const	std::string&	name)	const; 	If	the	key	of	a	command	is	the	first
prefix_length 	of	 name ,	return	the	key.	Otherwise,	return	the	empty	string.

public 	Methods:

MenuData(); 	Default	constructor.	Does	not	need	to	initialize	any	data	members.	The	 std::map 	default
constructor	will	automatically	build	an	empty	map.
void	addAction(const	ActionFunctionData&	function); 	If	the	action	already	exists,	do	nothing.	If	the

action	does	not	exist,	add	it	to	the	map.
bool	actionExists(const	std::string&	name)	const; 	If	 name 	is	a	key	in	the	map,	or	if	 name ’s	prefix	is	a
key	in	the	map,	return	true.	Otherwise	return	false.	You	should	be	using	the	protected	methods	to	do
most	of	the	work	here.
const	ActionFunctionData&	getAction(const	std::string&	name); 	If	 name 	is	an	action,	return	the
ActionFunctionData 	associated	with	it.	Otherwise,	return	a	 static 	default	constructed
ActionFunctionData 	object.
void	printActionHelp(std::ostream&	out)	const; 	Send	the	 help 	message	to	 out .	Use	the	form	shown	in
the	example	session	above.

Update	 library-application/Makefile
Add	 MenuData.{h,cpp} 	in	the	appropriate	places	to	add	them	to	the	library	and	install	the	header	file.	Unless,
of	course,	you	have	adopted	the	updated	 Makefile 	setup	we	built	in	class.

Update	 library-application/ApplicationData.{h,cpp}
We	will	update	the	 ApplicationData 	class	to	support	a	text	menu	based	application.

ApplicationData 	Class

Data	Members:

These	additional	data	members	should	be	in	the	 private 	or	 protected 	section	of	the	class.	No	 public 	data
members	are	allowed.

bool 	a	variable	to	track	whether	the	application	is	done	or	not.	Initialized	to	false	in	the	constructor.
MenuData 	a	collection	of	the	commands	supported	by	the	application.	The	default	constructor	for
MenuData 	will	be	called	automatically	without	any	new	code	in	the	constructor.

public 	Methods:

Constructor:	Initializes	the	new	data	members.
void	addAction(const	ActionFunctionData&	action); 	Adds	 action 	to	the	 MenuData 	data	member.
void	setDone(bool	done); 	Sets	the	new	 bool 	data	member	to	the	value	of	 done .
void	printActionHelp(); 	Causes	the	 MenuData 	data	member’s	 printActionHelp 	method	to	be	called.	Uses
the	 ApplicationData 	data	member	for	output	stream.
void	clearToEOL(); 	Reads	from	the	 ApplicationData 	data	member	for	input	stream	until	the	end	of	line
(EOL)	is	found.	The	EOL	can	happen	in	one	of	two	ways.	1)	A	new	line	character	is	read.	2)	The	end	of
the	stream	is	reached.	The	data	read	from	the	stream	is	discarded.	The	whole	point	is	to	advance	the
input.
void	takeAction(const	std::string&	choice); 	If	 choice 	is	the	name	of	an	action	in	the	 MenuData 	data
member,	call	the	 ActionFunctionType 	associated	with	the	action.	Otherwise,	print	an	error	message	and
clear	to	end	of	line.	The	error	message	format	can	be	seen	in	the	example	session	above.
void	mainLoop(); 	While	the	input	stream	is	 good() 	and	the	data	member	tracking	done	is	 false ,	read
the	user’s	“Choice?	”	from	the	input	stream	and	take	the	action	indicated	by	the	choice.

Create	 library-commands/menu_test_aux.{h,cpp}
Functions:

void	menuUI(ApplicationData&	app_data); 	Uses	 app_data 	to	display	the	action	help	and	clears	to	EOL.
void	commentUI(ApplicationData&	app_data); 	Clears	the	input	to	the	EOL.
void	echoUI(ApplicationData&	app_data); 	Collect	all	of	the	characters	in	the	input	stream	up	to	the	EOL.
Send	them	to	the	output	stream,	followed	by	a	newline	character.
void	quitUI(ApplicationData&	app_data); 	Sets	the	 app_data ’s	done	to	be	true.
int	register_menu_test_commands(ApplicationData&	app_data); 	Adds	all	of	the	actions	in	the	table	above	to
the	 app_data .
int	menu_test(ApplicationData&	app_data); 	Uses	 register_menu_test_commands 	to	create	all	of	the
commands,	then	calls	 app_data.mainLoop() .	Returns	0.

Update	 library-commands/Makefile
Add	 menu_test_aux.{h,cpp} 	in	the	appropriate	places	to	add	them	to	the	library	and	install	the	header	file.

Unless,	of	course,	you	have	adopted	the	updated	 Makefile 	setup	we	built	in	class.

Create	 program-menu-test/menu_test.cpp
Functions:

int	main(); 	Entry	point	to	the	menu	test	program.	Should	create	an	 ApplicationData 	and	pass	it	to	the
menu_test 	function	found	in	 menu_test_aux 	and	return	the	result	of	that	function	call.

Create	 program-menu-test/Makefile
This	file	must	contain	rules	such	that	any	of	the	following	commands	will	build	the	 menu_test 	program:

make
make	all
make	menu_test

Create	 program-menu-test/.gitignore
The	file	needs	to	store	one	line	of	text:

menu_test

This	will	prevent	the	executable	program	from	being	committed	to	the	repository.	It	is	a	derived	file.

Update	 Makefile
Update	the	project-level	Makefile	so	that	 make 	and	 make	all 	in	the	project	directory	will	call	 make 	in	the
program-menu-test 	directory.
If	necessary,	make	sure	the	order	of	make	commands	is	correct	to	build	prerequisite	libraries	in	the
correct	order.

Additional	Documentation
Scripting	input

Grading	Instructions
To	receive	credit	for	this	assignment:

your	code	must	be	pushed	to	your	repository	for	this	class	on	GitHub
all	unit	tests	must	pass
all	acceptance	tests	must	pass
all	programs	must	build,	run,	and	execute	as	described	in	the	assignment	descriptions.

Extra	Challenges	(Not	Required)
TBA

https://www.cs.utahtech.edu/cs/3005/assignments.wav_wizard/assignment_18_menu_system/scripting_input.php

