
CS	3005:	Programming	in	C++
Audio	Track	Creator	(Additional	Features)
Introduction
In	the	previous	assignment,	you	created	a	program	that	creates	an	 AudioTrack 	object	and	fills	it	with	data,
depending	on	the	user’s	choice.	In	this	assignment,	you	will	add	additional	choices	for	the	form	of	data	that
can	be	added	to	an	 AudioTrack 	object.

The	two	options	are	sine	and	sawtooth	waves.	The	sine	wave	is	generated	using	the	 std::sin(angle) 	function
from	the	C++	standard	library.	An	angle	must	be	computed	that	corresponds	to	a	position	on	the	horizontal
axis	of	the	graph.

Given	 sample_number 	(the	position	in	the	audio	track),	 frequency 	(how	quickly	the	wave	changes),	and
samples_per_second 	(the	sample	rate)

Then:	 angle	=	(6.28	*	sample_number	*	frequency)	/	samples_per_second

The	following	is	a	graph	for	 samples_per_second	=	1000 	over	a	 1.23 	second	interval,	at	 frequency	=	10.0 .

A	sawtooth	wave	also	follows	a	periodic	pattern.	But,	it	has	straight	line	edges,	that	produce	a	pattern	that
resembles	the	teeth	of	a	saw.	The

Given:	 sample_number 	(the	position	in	the	audio	track,	an	 unsigned	int ),	 frequency 	(how	quickly	the	wave
changes,	a	 double ),	and	 samples_per_second 	(the	sample	rate,	an	 int )

Then:

cycle_size	=	samples_per_second/frequency 	is	how	many	samples	there	are	per	cycle.
j	=	sample_number	%	cycle_size 	is	the	how	far	into	the	current	cycle	the	current	sample	is.
amplitude	=	-1.0	+	(2.0	*	j)	/	(cycle_size	-	1) 	is	the	amplitude	of	the	sawtooth	wave.

Even	though	 frequency 	is	a	 double ,	we	want	 cycle_size 	to	be	an	 unsigned	int .	So,	we	assign	the	result	of
the	division	into	 cycle_size 	and	intentionally	discard	any	fractional	part	of	the	result.	This	is	necessary
because	we	want	a	discrete	number	of	samples	per	cycle.

Now,	when	we	compute	 j 	as	an	 unsigned	int ,	the	 % 	operator	will	work	find	with	two	integer	types	as
operands.

Finally,	 amplitude 	is	a	 double ,	that	is	computed	from	some	float	and	some	integer	inputs.	When	 (2.0	*	j) 	is
computed,	 j ’s	value	is	promoted	to	 double 	to	match	the	type	of	 2.0 .	When	the	division	 (2.0	*	j)	/
(cycle_size	-	1) 	happens,	the	numerator	is	a	 double 	because	it’s	the	result	of	 2.0	*	j .	The	denominator’s
value	will	be	promoted	to	 double 	to	match	the	type	of	the	numerator.	So,	the	overall	computation	results	in
a	correct	 double 	value.



The	following	is	a	graph	for	 samples_per_second	=	23 	over	a	 1.34 	second	interval,	at	 frequency	=	5.0 .

Assignment
In	this	assignment,	you	will	update	the	 audio_track_creator 	program	to	allow	the	user	to	select	sine	or
sawtooth	wave	data	in	addition	to	the	ramp	options	that	were	made	available	in	the	previous	assignment.

An	example	interaction	with	the	program	could	look	like	this:

Samples/Second:	1000
Seconds:	1.23
Fill	style:	sine
Frequency:	10

sample_number,amplitude
0,0
1,0.0627587
2,0.12527
3,0.187287
...
1228,0.988864
1229,0.977574

Another	example	interaction	with	the	program	could	look	like	this:

Samples/Second:	1000
Seconds:	1.23
Fill	style:	whammy
Fill	style	'whammy'	is	not	allowed.

Programming	Requirements
Update	 library-application/ApplicationData.{h,cpp}
ApplicationData 	Class

Data	Members:

std::vector<double>	doubleRegisters; 	Vector	of	‘registers’	to	store	values	for	the	application.	Should	be
initialized	in	the	constructor	to	have	5	register	slots	(size	of	5).

public 	Methods:

double	getDoubleRegister(const	unsigned	int	position)	const; 	Returns	the	value	of	the	given	register.	If
position 	is	out	of	range,	return	-INFINITY.



void	setDoubleRegister(const	unsigned	int	position,	const	double	value); 	Assigns	the	value	of	the	given
register	to	the	given	value.	if	 position 	is	out	of	range,	do	nothing.

Update	 library-commands/audio_track_creator_aux.{h,cpp}
Functions:

void	sine_fill_audio_track(ApplicationData&	app_data); 	Fills	the	audio	track	of	the	given
ApplicationData 	with	a	sine	wave.	The	formula	to	get	the	amplitude	at	each	sample	should	be	as	follows:
std::sin(angle) .	 angle 	is	computed	using	the	formula	described	above.	 samples_per_second 	is	the	value
previously	assigned	to	the	audio	track	and	 frequency 	is	the	value	stored	in	the	 ApplicationData ’s
register	0.
void	sawtooth_fill_audio_track(ApplicationData&	app_data); 	Fills	the	audio	track	of	the	given
ApplicationData 	with	a	sawtooth	waveform.	The	formula	to	get	the	amplitude	of	the	sawtooth	wave	is
described	above.	The	 samples_per_second 	and	 frequency 	are	found	as	in	 sine_fill_audio_track .
void	fill_audio_track(ApplicationData&	app_data); 	This	function	should	be	updated	to	be	able	to	call	the
new	functions	above.	In	both	new	cases,	it	should	prompt	the	user	for	a	frequency	value	which	should
be	stored	in	register	0	of	the	 ApplicationData 	to	be	used	inside	the	new	functions.	The	prompts	and
error	outputs	should	match	the	example	executions	shown	above.

Additional	Documentation
sin
floor
%,	modulo/remainder

Grading	Instructions
To	receive	credit	for	this	assignment:

your	code	must	be	pushed	to	your	repository	for	this	class	on	GitHub
all	unit	tests	must	pass
all	acceptance	tests	must	pass
all	programs	must	build,	run,	and	execute	as	described	in	the	assignment	descriptions.

Extra	Challenges	(Not	Required)
Make	a	 square_fill_audio_track 	function	that	fills	the	audio	track	with	a	square	wave.

Square	Wave
Make	a	 triangle_fill_audio_track 	function	that	fills	the	audio	track	with	a	triangle	wave.

Triangle	Wave
Make	a	 pulse_fill_audio_track 	function	that	fills	the	audio	track	with	a	pulse	wave.	This	should	prompt
the	user	for	an	additional	value	of	a	 duty_cycle .	A	 duty_cycle 	value	of	 0.5 	should	produce	a	pulse	wave
identical	to	your	square	wave.

Pulse	Wave

https://cplusplus.com/reference/cmath/sin/
https://en.cppreference.com/w/cpp/numeric/math/floor
https://en.cppreference.com/w/cpp/language/operator_arithmetic
https://en.wikipedia.org/wiki/Square_wave
https://en.wikipedia.org/wiki/Triangle_wave
https://en.wikipedia.org/wiki/Pulse_wave

