
CS	3005:	Programming	in	C++
Audio	Track	Creator
Introduction
Audio	tracks	can	be	configured	by	sample	rate	(samples	per	second)	and	by	duration	(number	of	seconds).
After	configuration,	audio	tracks	can	be	filled	with	audio	data.	For	audio	data	to	be	converted	to	interesting
sounds,	there	are	usually	patterns	to	the	values	stored.

One	simple	pattern	for	values	is	a	“ramp”.	A	ramp	smoothly	changes	its	values	from	the	beginning	to	the
end.	Below	are	examples	of	ramp	up	and	ramp	down.

The	mathematical	definition	of	a	ramp	is:

Given:	 v1 	and	 v2 	at	the	beginning	and	ending	values	in	the	ramp,	 s 	is	the	number	of	entries	in	the	ramp,
and	 i 	is	the	current	entry	in	the	ramp;

Then:	 v(i)	=	v1	+	(v2	-	v1)	*	i	/	(s	-	1)

Assignment
In	this	assignment,	you	will	make	a	program	that	allows	the	user	to	configure	an	audio	track,	and	fill	it	with



either	a	ramp	up	or	a	ramp	down	pattern.	The	program	will	ask	the	user	for	samples	per	second	and	number
of	seconds.	It	will	then	ask	the	user	whether	the	audio	track	should	be	filled	with	ramp	up	or	ramp	down.

After	applying	the	configuration	and	inserted	the	ramp	data,	the	program	should	display	the	contents	of	the
audio	track.	The	format	of	the	display	will	look	like	this:

sample_number,amplitude
0,0
1,0.0666667
2,0.133333
3,0.2
4,0.266667
5,0.333333
6,0.4
7,0.466667
8,0.533333
9,0.6
10,0.666667
11,0.733333
12,0.8
13,0.866667
14,0.933333
15,1

Note	there	is	a	header	line	with	 sample_number,amplitude ,	followed	by	one	line	per	entry.	The	commas	in	the
output	cause	the	data	to	be	comma	separated,	and	appropriate	for	creating	CSV	files.	You	can	put	this
output	into	a	CSV	file,	by	copying	and	pasting	it.

Visualize	your	output	using	the	 show_graph.py 	program	we	have	provided.

./show_graph.py	--data-file	file_name.csv

Example	Session

$	./program-audio-track-creator/audio_track_creator
Samples/Second:	13
Seconds:	1.3
Fill	style:	rampup

sample_number,amplitude
0,0
1,0.0666667
2,0.133333
3,0.2
4,0.266667
5,0.333333
6,0.4
7,0.466667
8,0.533333
9,0.6
10,0.666667
11,0.733333
12,0.8
13,0.866667
14,0.933333
15,1

Programming	Requirements
Update	 library-application/ApplicationData.{h,cpp}
ApplicationData 	Class

Data	Members:

AudioTrack 	Audio	track	associated	with	the	current	application.	Should	be	created	with	the	default
constructor	inside	 ApplicationData ’s	constructor.

https://www.cs.utahtech.edu/cs/3005/assignments.wav_wizard/assignment_05_audio_track_creator/show_graph.py


public 	Methods:

AudioTrack&	getAudioTrack(); 	Returns	a	reference	to	the	audio	track	member.
const	AudioTrack&	getAudioTrack()	const; 	Returns	a	const	reference	to	the	audio	track	member.

Since	 ApplicationData 	uses	 AudioTrack ,	which	library	should	be	built	first?

Create	 library-commands/audio_track_creator_aux.{h,cpp}
Functions:

void	rampup_fill_audio_track(ApplicationData&	app_data); 	Fills	the	audio	track	of	the	given
ApplicationData 	with	smooth,	linearly	increasing	samples.	The	samples	should	start	at	 0.0 	and	end	at
1.0 .	The	number	of	entries	in	the	ramp	is	the	size	of	the	vector.
void	rampdown_fill_audio_track(ApplicationData&	app_data); 	Fills	the	audio	track	of	the	given
ApplicationData 	with	smooth,	linearly	decreasing	samples.	The	samples	should	start	at	 1.0 	and	end	at
0.0 .	The	number	of	entries	in	the	ramp	is	the	size	of	the	vector.
void	display_audio_track(ApplicationData&	app_data); 	Displays	all	of	the	samples	of	the	audio	track.
Each	sample	is	displayed	in	the	following	format:	 sample_number,amplitude\n 	where	 sample_number 	is
which	sample	is	being	shown,	 amplitude 	is	the	value	of	the	sample,	and	 \n 	represents	a	newline.	NOTE:
They	should	be	preceded	by	a	header	with	a	blank	line,	followed	by	a	line	indicating	the	format:	i.e.	the
string	 \nsample_number,amplitude\n .
void	fill_audio_track(ApplicationData&	app_data); 	Asks	the	user	“Fill	style:	“.	Depending	on	the	string
typed	by	the	user,	fills	with	rampup,	fills	with	rampdown,	or	displays	the	message	“Fill	style	‘bad-
choice’	is	not	allowed.”.
int	audio_track_creator(ApplicationData&	app_data); 	Asks	the	user	“Samples/Second:	“	and	“Seconds:	“.
The	first	is	an	integer,	the	second	is	a	double.	If	both	are	positive,	then	sets	the	size	of	the	audio	track,
fills	the	audio	track,	and	displays	the	audio	track.	Otherwise,	displays	the	message	“Positive	values
expected	for	samples	per	second	and	seconds.”	Returns	the	size	of	the	audio	track.

Update	 library-commands/Makefile
Add	 audio_track_creator_aux.{h,cpp} 	in	the	appropriate	places	to	add	them	to	the	library	and	install	the
header	file.

Create	 program-audio-track-creator/audio_track_creator.cpp
Functions:

int	main(); 	Entry	point	to	the	audio	track	creator	program.	Should	create	an	 ApplicationData 	and	pass
it	to	the	 audio_track_creator 	function	found	in	 audio_track_creator_aux 	and	return	the	result	of	that
function	call.

Create	 program-audio-track-creator/Makefile
This	file	must	contain	rules	such	that	any	of	the	following	commands	will	build	the	 audio_track_creator
program:

make
make	all
make	audio_track_creator

Create	 program-audio-track-creator/.gitignore
The	file	 program-audio-track-creator/.gitignore 	needs	to	store	one	line	of	text:

audio_track_creator

This	will	prevent	the	executable	program	 audio_track_creator 	from	being	committed	to	the	repository.	It	is	a
derived	file.

Update	 Makefile
Update	the	project-level	Makefile	so	that	 make 	and	 make	all 	in	the	project	directory	will	call	 make 	in	the
program-audio-track-creator 	directory.



If	necessary,	make	sure	the	order	of	make	commands	is	correct	to	build	prerequisite	libraries	in	the
correct	order.

Additional	Documentation
Function	Overloading

Grading	Instructions
To	receive	credit	for	this	assignment:

your	code	must	be	pushed	to	your	repository	for	this	class	on	GitHub
all	unit	tests	must	pass
all	acceptance	tests	must	pass
all	programs	must	build,	run,	and	execute	as	described	in	the	assignment	descriptions.

Extra	Challenges	(Not	Required)
Create	a	 random_fill_audio_track 	function.	This	function	fills	the	audio	track	with	random	samples.
Make	sure	 audio_track_creator 	can	call	this	function.	Is	this	the	same	as	white	noise?

Random	Double	in	C++	in	range	of	0-1
White	noise

Create	an	 exponential_rampdown_fill_audio_track 	function.	This	function	works	similarly	to	the	 rampdown
one,	but	decreases	exponentially	(i.e.	divides	by	2	each	step).	Try	to	make	it	still	start	at	 1.0 .

Can	you	make	the	 exponential_rampup_fill_audio_track 	function?	If	you	want	the	function	to	end	at
1.0 ,	can	you	calculate	the	value	to	start	at?	Does	it	work	for	small	audio	track	sizes?	Does	it	work
for	large	ones?	Does	it	work	for	very	large	ones?	Why	or	why	not?
Numeric	limits	of	different	C++	types
Double-precision	floating-point	format
Visualizer	for	what	the	bits	looks	like	in	a	double

https://en.wikipedia.org/wiki/Function_overloading
https://stackoverflow.com/questions/19741810/get-random-double-number-from-0-1-in-c
https://en.wikipedia.org/wiki/White_noise
https://en.cppreference.com/w/c/types/limits
https://en.wikipedia.org/wiki/Double-precision_floating-point_format
https://bartaz.github.io/ieee754-visualization/

