Computer Organization and Architecture
CPU Caching

Dr Russ Ross
Utah Tech University—Department of Computing

Spring 2026

Dr Russ Ross (Computing) CS 2810 Spring 2026 1/22

The memory wall

CPU pipelines can execute at GHz rates, but useful work pauses

when loads miss in cache.

At 3 GHz, one cycle is about 0.33 ns. If every load waited for a

slower level, the whole machine would feel much slower.

Access Typical latency | 3 GHz equivalent
L1 hit 1 ns about 1.0 GHz

L2 hit 4 ns about 250 MHz

L3 hit 14 ns about 71 MHz
DRAM hit | 90 ns about 11 MHz

The equivalent-frequency column is a rough intuition tool, not a

precise performance model.

Dr Russ Ross (Computing)

CS 2810

The cache hierarchy exists to absorb most accesses at the
top levels.

e Small, very fast private caches near each core

e Larger mid-level caches with slightly higher latency
o Last-level shared cache before DRAM

e DRAM for capacity, not speed

When the hit rate is high, average memory access time
stays close to L1 behavior.

Spring 2026 2/22

Why locality makes caching effective

Programs are not random address generators; they cluster
accesses in time and space.

Temporal locality (same data reused soon)

Read-modify-write loops repeatedly hit the same line while
updating values.
for (int i = 0; i < nj; i++) {
int old = counterl[il;
int next = old + delta;

counter[i] = next;

}

counter[i] is read and written close together, so recently
loaded lines are useful again.

Dr Russ Ross (Computing)

CS 2810

Spatial locality (nearby data reused soon)
Struct fields and adjacent array elements often share a line.

typedef struct {
int id;
int credits;
int flags;

} Student;

sum += s[k].credits;
if (s[k].flags & 1) { ... }

Once s[k] arrives, nearby fields are already in the fetched
line.

Spring 2026

3/22

Cache lines and refill path

Caches transfer data one line at a time, and misses fall back

through lower levels.

A 64-byte line means one miss can serve multiple nearby

loads.
Line | Address range | Typical use
line 0 | 0x1000—0x103F al0]..a[15] in a sequential loop
line 1 | 0x1040—0x107F al[16]..a[31], brought by next
miss
line 2 | 0x1080—0x10BF next chunk, often prefetched

Load at ox1058 pulls line 1, so 0x105¢, 0x1060, and 0x1064 are
likely hits.

Dr Russ Ross (Computing)

The lookup path is conceptually:
L1 -+ L2 -+ L3 - DRAM

e L1 hit: serve immediately

e L1 miss, L2 hit: fill L1 from L2

e L1/L2 miss, L3 hit: fill upper levels on return path
e DRAM hit: fill LLC, then upper levels

Many CPUs install returned data into L1 for the requesting
core; exact inclusion policy is microarchitecture-specific.

CS 2810 Spring 2026 4/22

Direct-mapped placement rule

A direct-mapped cache has exactly one destination line per
memory block. This keeps hardware simple but can amplify
conflicts.

For 16 KiB and 64-byte lines:

e Lines: 1663484 = 256

e Offset bits: log,(64) = 6
e Index bits: log,(256) = 8
e Tag bits: 32 -8 —6=18

Tag Index | Offset

18 bits | 8 bits | 6 bits

Bit ranges are tag[31:14], index[13:6], offset[5:0].

Dr Russ Ross (Computing)

Memory block number -+ single cache line

0o =0

-+ 1
255 + 255
266 =+ 0
257 -+ 1

The modulo behavior (block mod 256) is exactly where conflict
misses originate.

CS 2810 Spring 2026 5/22

Example in direct-mapped bits

The three addresses below differ in high bits, but their index bits
are identical.

Example

32-bit addresses, 16 KiB cache, 64-byte lines.

Symbol | Address | Offset bits [5:0]

A 0x0000_10CO | 0b000000O
B 0x0000_50C0 | 0b000000
C 0x0000_90CO | 0b000000O

Direct-mapped field split: tag[31:14] | index[13:6] | offset[5:0]

CS 2810

Q W =

All three map to index oboooo1101 (line 0x0p), so each

000000000000000001

000000000000000101

000000000000001001
tag (18 bits)

00001101 | 000000
00001101 | 000000
00001101 | 000000
index offset

new one evicts the previous one.

Spring 2026

6/22

Whiteboard walkthrough: direct-mapped thrash

Example

32-bit addresses, 16 KiB cache, 64-byte lines.

Symbol | Address | Offset bits [5:0]
A 0x0000_10C0 | 06000000
B 0x0000_50C0 | 0b000000
C 0x0000_90C0 | 0b000000

Use 4, B, C, A, B, Cin the worksheet at right.

Direct-mapped extraction reminder:

A: £=0%00000, i=0x0D, 0=0x00
B: t=0x00001, i=0x0D, 0=0x00
C: t=0%00002, i=0x0D, 0=0x00

Dr Russ Ross (Computing)

CS 2810

Step | Access | line[0x0D] tag after access
1 A
2 B
3 C
4 A
5 B
6 C

Expected result: 6 misses, 0 hits.

Spring 2026

7/22

Fully associative placement rule

At the other extreme, a fully associative cache lets any block Example legal placements

occupy any line. This reduces conflict misses but increases

lookup cost.

For the same cache capacity:

o Offset bits: 6
e Index bits: 0

e Tag bits: 32 — 6 = 26

Tag

Offset

26 bits

6 bits

Each access compares against many tags in parallel (CAM-

like behavior).

Dr Russ Ross (Computing)

A - line 5
B - line 201
C -+ line 17

Because there is no fixed index, A/B/C no longer force each
other out solely due to address mapping.

For a 256-line cache, each lookup compares roughly:

e direct-mapped: 1 tag
e 4d-way set-assoc: 4 tags
o fully associative: 256 tags

CS 2810 Spring 2026 8/22

Example in fully associative

The left panel stays fixed; only interpretation changes with
organization.

Example

32-bit addresses, 16 KiB cache, 64-byte lines.

Symbol | Address | Offset bits [5:0]

A 0x0000_10CO | 0b000000O
B 0x0000_50C0 | 0b000000
C 0x0000_90CO | 0b000000O

Fully associative field split: tag[31:6] | offset[5:0]

Dr Russ Ross (Computing)

CS 2810

For this organization, the same sequence 4, B, C, A, B,

¢ behaves as:

e First A, B, c: compulsory misses

e Second A, B, c: hits (assuming no unrelated eviction)

Metric | Value | Reason
Misses 3 first touch
Hits 3 all three can coexist

A replacement policy still matters here; if unrelated
blocks flood the cache, these hits can disappear.

Spring 2026

9/22

set-aSSOCiatiVe i

Set-associative as the practical middle

Set associativity balances hit-rate improvement against
hardware complexity.

A cache with associativity N has these endpoints:

e N = 1: direct-mapped
e N = total lines: fully associative

Typical CPU choices are moderate values (N = 2,4,8,12,16

depending on level).

Each block maps to one set, then chooses one of N ways
inside that set.

This gives hardware a bounded search space while still
reducing pathological collisions.

For a 4-way version of our running cache:

e Total lines: 256
2

o Sets: 256 — 64

o Offset

4
bits: 6

e Set bits: log,(64) = 6

e Tag bits: 32 —6—6 =20

Tag

Set

Offset

20 bits

6 bits

6 bits

Representative pattern in real CPUs:

Level | Common associativity
L1D 4-way to 8-way
L2 8-way to 16-way

Dr Russ Ross (Computing) CS 2810

Spring 2026

10/22

SEt-aSSOCiative i

Example in 4-way set-associative

The same addresses still collide on set index, but multiple ways All three addresses map to the same set, with different

absorb that pressure.

Example

32-bit addresses, 16 KiB cache, 64-byte lines.

Symbol | Address | Offset bits [5:0]

A 0x0000_10CO | 0b000000O
B 0x0000_50C0 | 0b000000
C 0x0000_90CO | 0b000000O

4-way split: tagl31:12] | set[11:6] | offset[5:0]

Dr Russ Ross (Computing)

tags.

set [0x03]

| way 2 | way 3 |
PR PR +

A, B, and c¢ fit simultaneously, so the second half of
A,B,C,A,B,C hits.

After access | Ways occupied in Hit /miss
set 0x03
A 1/4 miss
2/4 miss
C 3/4 miss
CS 2810 Spring 2026 11/22

set-aSSOCiatiVe i

Same sequence, three organizations

Holding the access pattern fixed isolates the effect of organization.

Organization Misses | Hits | Conflict pressure | Hardware cost
Direct-mapped 6 0 high low

Fully associative | 3 3 very low high

4-way set-assoc | 3 3 low moderate

Set-associative designs are widely used because they preserve most of the hit-rate benefit without fully associative lookup

cost.

Dr Russ Ross (Computing)

CS 2810

Spring 2026

12/22

set-aSSOCiatiVe i

Reading address fields like hardware

The address decoder always performs field extraction before =~ Example with 0x1234_56as:

tag comparison. e offset = lower 6 bits

For 4-way set-associative in this lecture: e set = next 6 bits

® offset[5:0] selects byte position in line * tag = upper 20 bits

e set[11:6] selects one set This logic is simple in concept but heavily optimized in
e tag[31:12] is compared against tags in all ways of that set physical layout and timing paths.

31 12 11 65 0

+ + + +
| tag | set | offset |
+ + + +

Dr Russ Ross (Computing) CS 2810 Spring 2026 13/22

Miss classes and performance cliffs

Different misses have different causes, so mitigations differ As working set or stride increases, throughput often drops in
too. steps:

Miss class | Cause ° Ll—dom%natcd rcg?on
e [2-dominated region
Compulsory | first touch e L3-dominated region

o DRAM-dominated region

Capacity working set > cache

Conflict mapping collisions This step pattern is the main intuition behind the memory-

mountain benchmark.

Conflict misses are exactly what associativity is designed to
reduce.

Dr Russ Ross (Computing) CS 2810 Spring 2026 14/22

Loop order and locality

Two loops can do identical arithmetic but induce very Column-wise traversal creates large strides on row-major
different memory behavior. data.
Row-major traversal aligns with contiguous memory in C- for (int j = 0; j < cols; j++) {

for (int i = 0; i < rows; i++) {
sum += a[i][j];

like layouts.

for (int 1 = 0; i < rows; i++) { }
for (int j = 0; j < cols; j++) { }
sum += a[i] [j]; . .
3 This tends to increase miss rate and memory-level stalls.
¥

This preserves spatial locality and helps hardware

prefetchers.

Dr Russ Ross (Computing) CS 2810 Spring 2026 15/22

Representative cache structures (recent mainstream hardware)

Modern chips vary in details, but the hierarchy pattern is remarkably consistent.

Hardware

L1

L2

L3 / LLC

Comment

Intel Core i9-14900K

split L1 per core

2 MB per P-core, 4 MB
per E-cluster

36 MB shared

desktop hybrid core
design

AMD Ryzen 9 9950X

80 KB split L1 per core

1 MB per core

64 MB shared

Zen 5 desktop

NVIDIA H100

up to 256 KB/SM
L1+shared

50 MB L2

GPU memory hierarchy

Private upper levels hide latency; shared lower levels reduce DRAM traffic and provide inter-core data sharing.

Dr Russ Ross (Computing)

CS 2810

Spring 2026

16/22

Typical line sizes and associativity in practice

The specific parameters differ by vendor and level, but a few trends are common.

e (4-byte lines remain common in general-purpose CPUs.

e L1D is often around 4-way to 8-way.

e L.2/L3 are often more associative than L1.

e True LRU is rare in large caches; pseudo-LRU variants are common.

When you benchmark real code, these parameters surface as hit-rate and bandwidth inflection points.

Dr Russ Ross (Computing) CS 2810 Spring 2026 17/22

Why writes need separate policies

Reads are straightforward, but writes must define both
update timing and allocation behavior.

Two questions define write behavior:

1. On a write hit, do we update lower memory immediately?
2. On a write miss, do we bring the line into cache first?

Those choices produce the familiar policy pairs.

Dr Russ Ross (Computing)

CS 2810

Common pairings in real systems:

o write-through + no-write-allocate (often in simpler
designs)

o write-back + write-allocate (common in high-performance
cores)

Coherence, bandwidth, and verification complexity all
influence the choice.

Spring 2026 18/22

Write-through vs write-back

Both policies are correct; they optimize for different system

goals.

Policy

Behavior

Typical tradeoff

Write-through

update cache and
lower level on each
write

simpler state, higher
bandwidth use

Write-back

mark line dirty,
defer lower-level
write until eviction

lower bandwidth,
more control
complexity

Dr Russ Ross (Computing)

CS 2810

If a loop writes the same hot line 100 times:

e write-through may send about 100 lower-level writes
e write-back often sends about 1 write on eviction

That bandwidth difference is why write-back is common
in performance-oriented CPUs.

Spring 2026 19/22

Write-allocate vs no-write-allocate

Allocation policy on a write miss determines whether future No-write-allocate (write-around) writes straight to lower
writes can hit locally. level.

write-allocate pulls the line into cache, then writes it. This is often better for streaming output that is unlikely to

This is usually better when software will reuse nearby data be read again soon.

or repeatedly update the same line.

Dr Russ Ross (Computing) CS 2810 Spring 2026 20/22

Key points to carry forward

Caching decisions are design tradeoffs, and software behavior determines how those tradeoffs play out.

e Locality is the fundamental reason caches work.

e Address fields (tag, set/index, offset) define lookup behavior.

e Increasing associativity reduces conflicts but raises hardware cost.

e Set-associative caches are usually the practical sweet spot.

e Write policy choices strongly affect bandwidth and coherence complexity.

Dr Russ Ross (Computing) CS 2810 Spring 2026 21/22

Quick check questions

Use these to close the lecture or open discussion.

1. Why can two arrays far apart in address space still conflict in a direct-mapped cache?

2. If line size doubles, which address field must grow first?

3. When is no-write-allocate better than write-allocate?

4. Why does fully associative lookup generally cost more energy than set-associative lookup?

Dr Russ Ross (Computing) CS 2810 Spring 2026 22/22

	Caching
	Why caching exists
	Temporal locality (same data reused soon)
	Spatial locality (nearby data reused soon)

	Direct-mapped cache
	Fully associative cache
	Set-associative cache
	Behavior in code and systems
	Real hardware context
	Writes in caches
	Wrap-up

