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Caching Why caching exists
CachingWhy caching exists

The memory wall

CPU pipelines can execute at GHz rates, but useful work pauses 
when loads miss in cache.

At 3 GHz, one cycle is about 0.33 ns. If every load waited for a 
slower level, the whole machine would feel much slower.

Access Typical latency 3 GHz equivalent

L1 hit 1 ns about 1.0 GHz

L2 hit 4 ns about 250 MHz

L3 hit 14 ns about 71 MHz

DRAM hit 90 ns about 11 MHz

The equivalent-frequency column is a rough intuition tool, not a 
precise performance model.

The cache hierarchy exists to absorb most accesses at the 
top levels.

• Small, very fast private caches near each core
• Larger mid-level caches with slightly higher latency
• Last-level shared cache before DRAM
• DRAM for capacity, not speed

When the hit rate is high, average memory access time 
stays close to L1 behavior.
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Caching Why caching exists

Why locality makes caching effective

Programs are not random address generators; they cluster 
accesses in time and space.

Temporal locality (same data reused soon)

Read-modify-write loops repeatedly hit the same line while 
updating values.

for (int i = 0; i < n; i++) {

  int old = counter[i];

  int next = old + delta;

  counter[i] = next;

}

counter[i] is read and written close together, so recently 
loaded lines are useful again.

Spatial locality (nearby data reused soon)

Struct fields and adjacent array elements often share a line.

typedef struct {

  int id;

  int credits;

  int flags;

} Student;

sum += s[k].credits;

if (s[k].flags & 1) { ... }

Once s[k] arrives, nearby fields are already in the fetched 
line.
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Caching Why caching exists

Cache lines and refill path

Caches transfer data one line at a time, and misses fall back 
through lower levels.

A 64-byte line means one miss can serve multiple nearby 
loads.

Line Address range Typical use

line 0 0x1000–0x103F a[0]..a[15] in a sequential loop

line 1 0x1040–0x107F a[16]..a[31], brought by next 
miss

line 2 0x1080–0x10BF next chunk, often prefetched

Load at 0x1058 pulls line 1, so 0x105C, 0x1060, and 0x1064 are 
likely hits.

The lookup path is conceptually:

L1 → L2 → L3 → DRAM

• L1 hit: serve immediately
• L1 miss, L2 hit: fill L1 from L2
• L1/L2 miss, L3 hit: fill upper levels on return path
• DRAM hit: fill LLC, then upper levels

Many CPUs install returned data into L1 for the requesting 
core; exact inclusion policy is microarchitecture-specific.
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Caching Direct-mapped cache
Direct-mapped cache

Direct-mapped placement rule

A direct-mapped cache has exactly one destination line per 
memory block. This keeps hardware simple but can amplify 
conflicts.

For 16 KiB and 64-byte lines:

• Lines: 1638464 = 256

• Offset bits: log2(64) = 6

• Index bits: log2(256) = 8

• Tag bits: 32 − 8 − 6 = 18

Tag Index Offset

18 bits 8 bits 6 bits

Bit ranges are tag[31:14], index[13:6], offset[5:0].

Memory block number → single cache line

0   → 0

1   → 1

...

255 → 255

256 → 0

257 → 1

The modulo behavior (block mod 256) is exactly where conflict 
misses originate.
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Caching Direct-mapped cache

Example in direct-mapped bits

The three addresses below differ in high bits, but their index bits 
are identical.

Example

32-bit addresses, 16 KiB cache, 64-byte lines.

Symbol Address Offset bits [5:0]

A 0x0000_10C0 0b000000

B 0x0000_50C0 0b000000

C 0x0000_90C0 0b000000

Direct-mapped field split: tag[31:14] | index[13:6] | offset[5:0]

A = 000000000000000001 | 00001101 | 000000

B = 000000000000000101 | 00001101 | 000000

C = 000000000000001001 | 00001101 | 000000

      tag (18 bits)      index       offset

All three map to index 0b00001101 (line 0x0D), so each 
new one evicts the previous one.
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Caching Direct-mapped cache

Whiteboard walkthrough: direct-mapped thrash

Example

32-bit addresses, 16 KiB cache, 64-byte lines.

Symbol Address Offset bits [5:0]

A 0x0000_10C0 0b000000

B 0x0000_50C0 0b000000

C 0x0000_90C0 0b000000

Use A, B, C, A, B, C in the worksheet at right.

Direct-mapped extraction reminder:

A: t=0x00000, i=0x0D, o=0x00

B: t=0x00001, i=0x0D, o=0x00

C: t=0x00002, i=0x0D, o=0x00

Step Access line[0x0D] tag after access

1 A

2 B

3 C

4 A

5 B

6 C

Expected result: 6 misses, 0 hits.
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Caching Fully associative cache
Fully associative cache

Fully associative placement rule

At the other extreme, a fully associative cache lets any block 
occupy any line. This reduces conflict misses but increases 
lookup cost.

For the same cache capacity:

• Offset bits: 6
• Index bits: 0
• Tag bits: 32 − 6 = 26

Tag Offset

26 bits 6 bits

Each access compares against many tags in parallel (CAM-
like behavior).

Example legal placements

A → line 5

B → line 201

C → line 17

Because there is no fixed index, A/B/C no longer force each 
other out solely due to address mapping.

For a 256-line cache, each lookup compares roughly:

• direct-mapped: 1 tag
• 4-way set-assoc: 4 tags
• fully associative: 256 tags
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Caching Fully associative cache

Example in fully associative

The left panel stays fixed; only interpretation changes with 
organization.

Example

32-bit addresses, 16 KiB cache, 64-byte lines.

Symbol Address Offset bits [5:0]

A 0x0000_10C0 0b000000

B 0x0000_50C0 0b000000

C 0x0000_90C0 0b000000

Fully associative field split: tag[31:6] | offset[5:0]

For this organization, the same sequence A, B, C, A, B, 
C behaves as:

• First A, B, C: compulsory misses
• Second A, B, C: hits (assuming no unrelated eviction)

Metric Value Reason

Misses 3 first touch

Hits 3 all three can coexist

A replacement policy still matters here; if unrelated 
blocks flood the cache, these hits can disappear.
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Caching Set-associative cache
Set-associative cache

Set-associative as the practical middle

Set associativity balances hit-rate improvement against 
hardware complexity.

A cache with associativity 𝑁  has these endpoints:

• 𝑁 = 1: direct-mapped
• 𝑁 = total lines: fully associative

Typical CPU choices are moderate values (𝑁 = 2, 4, 8, 12, 16 
depending on level).

Each block maps to one set, then chooses one of 𝑁  ways 
inside that set.

This gives hardware a bounded search space while still 
reducing pathological collisions.

For a 4-way version of our running cache:

• Total lines: 256
• Sets: 2564 = 64

• Offset bits: 6
• Set bits: log2(64) = 6

• Tag bits: 32 − 6 − 6 = 20

Tag Set Offset

20 bits 6 bits 6 bits

Representative pattern in real CPUs:

Level Common associativity

L1D 4-way to 8-way

L2 8-way to 16-way
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Caching Set-associative cache

Example in 4-way set-associative

The same addresses still collide on set index, but multiple ways 
absorb that pressure.

Example

32-bit addresses, 16 KiB cache, 64-byte lines.

Symbol Address Offset bits [5:0]

A 0x0000_10C0 0b000000

B 0x0000_50C0 0b000000

C 0x0000_90C0 0b000000

4-way split: tag[31:12] | set[11:6] | offset[5:0]

All three addresses map to the same set, with different 
tags.

set[0x03]

+--------+--------+

| way 0  | way 1  |

+--------+--------+

| way 2  | way 3  |

+--------+--------+

A, B, and C fit simultaneously, so the second half of 
A,B,C,A,B,C hits.

After access Ways occupied in 
set 0x03

Hit/miss

A 1/4 miss

B 2/4 miss

C 3/4 miss
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Caching Set-associative cache

Same sequence, three organizations

Holding the access pattern fixed isolates the effect of organization.

Organization Misses Hits Conflict pressure Hardware cost

Direct-mapped 6 0 high low

Fully associative 3 3 very low high

4-way set-assoc 3 3 low moderate

Set-associative designs are widely used because they preserve most of the hit-rate benefit without fully associative lookup 
cost.
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Caching Set-associative cache

Reading address fields like hardware

The address decoder always performs field extraction before 
tag comparison.

For 4-way set-associative in this lecture:

• offset[5:0] selects byte position in line
• set[11:6] selects one set
• tag[31:12] is compared against tags in all ways of that set

31                           12 11      6 5      0

+-----------------------------+----------+--------+

|            tag              |   set    | offset |

+-----------------------------+----------+--------+

Example with 0x1234_56A8:

• offset = lower 6 bits
• set = next 6 bits
• tag = upper 20 bits

This logic is simple in concept but heavily optimized in 
physical layout and timing paths.
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Behavior in code and systems

Miss classes and performance cliffs

Different misses have different causes, so mitigations differ 
too.

Miss class Cause

Compulsory first touch

Capacity working set > cache

Conflict mapping collisions

Conflict misses are exactly what associativity is designed to 
reduce.

As working set or stride increases, throughput often drops in 
steps:

• L1-dominated region
• L2-dominated region
• L3-dominated region
• DRAM-dominated region

This step pattern is the main intuition behind the memory-
mountain benchmark.
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Caching Behavior in code and systems

Loop order and locality

Two loops can do identical arithmetic but induce very 
different memory behavior.

Row-major traversal aligns with contiguous memory in C-
like layouts.

for (int i = 0; i < rows; i++) {

  for (int j = 0; j < cols; j++) {

    sum += a[i][j];

  }

}

This preserves spatial locality and helps hardware 
prefetchers.

Column-wise traversal creates large strides on row-major 
data.

for (int j = 0; j < cols; j++) {

  for (int i = 0; i < rows; i++) {

    sum += a[i][j];

  }

}

This tends to increase miss rate and memory-level stalls.
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Real hardware context

Representative cache structures (recent mainstream hardware)

Modern chips vary in details, but the hierarchy pattern is remarkably consistent.

Hardware L1 L2 L3 / LLC Comment

Intel Core i9-14900K split L1 per core 2 MB per P-core, 4 MB 
per E-cluster

36 MB shared desktop hybrid core 
design

AMD Ryzen 9 9950X 80 KB split L1 per core 1 MB per core 64 MB shared Zen 5 desktop

NVIDIA H100 up to 256 KB/SM 
L1+shared

— 50 MB L2 GPU memory hierarchy

Private upper levels hide latency; shared lower levels reduce DRAM traffic and provide inter-core data sharing.
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Caching Real hardware context

Typical line sizes and associativity in practice

The specific parameters differ by vendor and level, but a few trends are common.

• 64-byte lines remain common in general-purpose CPUs.
• L1D is often around 4-way to 8-way.
• L2/L3 are often more associative than L1.
• True LRU is rare in large caches; pseudo-LRU variants are common.

When you benchmark real code, these parameters surface as hit-rate and bandwidth inflection points.
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Writes in caches

Why writes need separate policies

Reads are straightforward, but writes must define both 
update timing and allocation behavior.

Two questions define write behavior:

1. On a write hit, do we update lower memory immediately?
2. On a write miss, do we bring the line into cache first?

Those choices produce the familiar policy pairs.

Common pairings in real systems:

• write-through + no-write-allocate (often in simpler 
designs)

• write-back + write-allocate (common in high-performance 
cores)

Coherence, bandwidth, and verification complexity all 
influence the choice.
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Caching Writes in caches

Write-through vs write-back

Both policies are correct; they optimize for different system 
goals.

Policy Behavior Typical tradeoff

Write-through update cache and 
lower level on each 
write

simpler state, higher 
bandwidth use

Write-back mark line dirty, 
defer lower-level 
write until eviction

lower bandwidth, 
more control 
complexity

If a loop writes the same hot line 100 times:

• write-through may send about 100 lower-level writes
• write-back often sends about 1 write on eviction

That bandwidth difference is why write-back is common 
in performance-oriented CPUs.
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Caching Writes in caches

Write-allocate vs no-write-allocate

Allocation policy on a write miss determines whether future 
writes can hit locally.

Write-allocate pulls the line into cache, then writes it.

This is usually better when software will reuse nearby data 
or repeatedly update the same line.

No-write-allocate (write-around) writes straight to lower 
level.

This is often better for streaming output that is unlikely to 
be read again soon.
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Caching Wrap-up
Wrap-up

Key points to carry forward

Caching decisions are design tradeoffs, and software behavior determines how those tradeoffs play out.

• Locality is the fundamental reason caches work.
• Address fields (tag, set/index, offset) define lookup behavior.
• Increasing associativity reduces conflicts but raises hardware cost.
• Set-associative caches are usually the practical sweet spot.
• Write policy choices strongly affect bandwidth and coherence complexity.
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Caching Wrap-up

Quick check questions

Use these to close the lecture or open discussion.

1. Why can two arrays far apart in address space still conflict in a direct-mapped cache?
2. If line size doubles, which address field must grow first?
3. When is no-write-allocate better than write-allocate?
4. Why does fully associative lookup generally cost more energy than set-associative lookup?
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