
Computer Organization and Architecture
CPU Caching

Dr Russ Ross
Utah Tech University—Department of Computing

Spring 2026

Dr Russ Ross (Computing) CS 2810 Spring 2026 1/22

Caching Why caching exists
CachingWhy caching exists

The memory wall

CPU pipelines can execute at GHz rates, but useful work pauses
when loads miss in cache.

At 3 GHz, one cycle is about 0.33 ns. If every load waited for a
slower level, the whole machine would feel much slower.

Access Typical latency 3 GHz equivalent

L1 hit 1 ns about 1.0 GHz

L2 hit 4 ns about 250 MHz

L3 hit 14 ns about 71 MHz

DRAM hit 90 ns about 11 MHz

The equivalent-frequency column is a rough intuition tool, not a
precise performance model.

The cache hierarchy exists to absorb most accesses at the
top levels.

• Small, very fast private caches near each core
• Larger mid-level caches with slightly higher latency
• Last-level shared cache before DRAM
• DRAM for capacity, not speed

When the hit rate is high, average memory access time
stays close to L1 behavior.

Dr Russ Ross (Computing) CS 2810 Spring 2026 2/22

Caching Why caching exists

Why locality makes caching effective

Programs are not random address generators; they cluster
accesses in time and space.

Temporal locality (same data reused soon)

Read-modify-write loops repeatedly hit the same line while
updating values.

for (int i = 0; i < n; i++) {

 int old = counter[i];

 int next = old + delta;

 counter[i] = next;

}

counter[i] is read and written close together, so recently
loaded lines are useful again.

Spatial locality (nearby data reused soon)

Struct fields and adjacent array elements often share a line.

typedef struct {

 int id;

 int credits;

 int flags;

} Student;

sum += s[k].credits;

if (s[k].flags & 1) { ... }

Once s[k] arrives, nearby fields are already in the fetched
line.

Dr Russ Ross (Computing) CS 2810 Spring 2026 3/22

Caching Why caching exists

Cache lines and refill path

Caches transfer data one line at a time, and misses fall back
through lower levels.

A 64-byte line means one miss can serve multiple nearby
loads.

Line Address range Typical use

line 0 0x1000–0x103F a[0]..a[15] in a sequential loop

line 1 0x1040–0x107F a[16]..a[31], brought by next
miss

line 2 0x1080–0x10BF next chunk, often prefetched

Load at 0x1058 pulls line 1, so 0x105C, 0x1060, and 0x1064 are
likely hits.

The lookup path is conceptually:

L1 → L2 → L3 → DRAM

• L1 hit: serve immediately
• L1 miss, L2 hit: fill L1 from L2
• L1/L2 miss, L3 hit: fill upper levels on return path
• DRAM hit: fill LLC, then upper levels

Many CPUs install returned data into L1 for the requesting
core; exact inclusion policy is microarchitecture-specific.

Dr Russ Ross (Computing) CS 2810 Spring 2026 4/22

Caching Direct-mapped cache
Direct-mapped cache

Direct-mapped placement rule

A direct-mapped cache has exactly one destination line per
memory block. This keeps hardware simple but can amplify
conflicts.

For 16 KiB and 64-byte lines:

• Lines: 1638464 = 256

• Offset bits: log2(64) = 6

• Index bits: log2(256) = 8

• Tag bits: 32 − 8 − 6 = 18

Tag Index Offset

18 bits 8 bits 6 bits

Bit ranges are tag[31:14], index[13:6], offset[5:0].

Memory block number → single cache line

0 → 0

1 → 1

...

255 → 255

256 → 0

257 → 1

The modulo behavior (block mod 256) is exactly where conflict
misses originate.

Dr Russ Ross (Computing) CS 2810 Spring 2026 5/22

Caching Direct-mapped cache

Example in direct-mapped bits

The three addresses below differ in high bits, but their index bits
are identical.

Example

32-bit addresses, 16 KiB cache, 64-byte lines.

Symbol Address Offset bits [5:0]

A 0x0000_10C0 0b000000

B 0x0000_50C0 0b000000

C 0x0000_90C0 0b000000

Direct-mapped field split: tag[31:14] | index[13:6] | offset[5:0]

A = 000000000000000001 | 00001101 | 000000

B = 000000000000000101 | 00001101 | 000000

C = 000000000000001001 | 00001101 | 000000

 tag (18 bits) index offset

All three map to index 0b00001101 (line 0x0D), so each
new one evicts the previous one.

Dr Russ Ross (Computing) CS 2810 Spring 2026 6/22

Caching Direct-mapped cache

Whiteboard walkthrough: direct-mapped thrash

Example

32-bit addresses, 16 KiB cache, 64-byte lines.

Symbol Address Offset bits [5:0]

A 0x0000_10C0 0b000000

B 0x0000_50C0 0b000000

C 0x0000_90C0 0b000000

Use A, B, C, A, B, C in the worksheet at right.

Direct-mapped extraction reminder:

A: t=0x00000, i=0x0D, o=0x00

B: t=0x00001, i=0x0D, o=0x00

C: t=0x00002, i=0x0D, o=0x00

Step Access line[0x0D] tag after access

1 A

2 B

3 C

4 A

5 B

6 C

Expected result: 6 misses, 0 hits.

Dr Russ Ross (Computing) CS 2810 Spring 2026 7/22

Caching Fully associative cache
Fully associative cache

Fully associative placement rule

At the other extreme, a fully associative cache lets any block
occupy any line. This reduces conflict misses but increases
lookup cost.

For the same cache capacity:

• Offset bits: 6
• Index bits: 0
• Tag bits: 32 − 6 = 26

Tag Offset

26 bits 6 bits

Each access compares against many tags in parallel (CAM-
like behavior).

Example legal placements

A → line 5

B → line 201

C → line 17

Because there is no fixed index, A/B/C no longer force each
other out solely due to address mapping.

For a 256-line cache, each lookup compares roughly:

• direct-mapped: 1 tag
• 4-way set-assoc: 4 tags
• fully associative: 256 tags

Dr Russ Ross (Computing) CS 2810 Spring 2026 8/22

Caching Fully associative cache

Example in fully associative

The left panel stays fixed; only interpretation changes with
organization.

Example

32-bit addresses, 16 KiB cache, 64-byte lines.

Symbol Address Offset bits [5:0]

A 0x0000_10C0 0b000000

B 0x0000_50C0 0b000000

C 0x0000_90C0 0b000000

Fully associative field split: tag[31:6] | offset[5:0]

For this organization, the same sequence A, B, C, A, B,
C behaves as:

• First A, B, C: compulsory misses
• Second A, B, C: hits (assuming no unrelated eviction)

Metric Value Reason

Misses 3 first touch

Hits 3 all three can coexist

A replacement policy still matters here; if unrelated
blocks flood the cache, these hits can disappear.

Dr Russ Ross (Computing) CS 2810 Spring 2026 9/22

Caching Set-associative cache
Set-associative cache

Set-associative as the practical middle

Set associativity balances hit-rate improvement against
hardware complexity.

A cache with associativity 𝑁 has these endpoints:

• 𝑁 = 1: direct-mapped
• 𝑁 = total lines: fully associative

Typical CPU choices are moderate values (𝑁 = 2, 4, 8, 12, 16
depending on level).

Each block maps to one set, then chooses one of 𝑁 ways
inside that set.

This gives hardware a bounded search space while still
reducing pathological collisions.

For a 4-way version of our running cache:

• Total lines: 256
• Sets: 2564 = 64

• Offset bits: 6
• Set bits: log2(64) = 6

• Tag bits: 32 − 6 − 6 = 20

Tag Set Offset

20 bits 6 bits 6 bits

Representative pattern in real CPUs:

Level Common associativity

L1D 4-way to 8-way

L2 8-way to 16-way

Dr Russ Ross (Computing) CS 2810 Spring 2026 10/22

Caching Set-associative cache

Example in 4-way set-associative

The same addresses still collide on set index, but multiple ways
absorb that pressure.

Example

32-bit addresses, 16 KiB cache, 64-byte lines.

Symbol Address Offset bits [5:0]

A 0x0000_10C0 0b000000

B 0x0000_50C0 0b000000

C 0x0000_90C0 0b000000

4-way split: tag[31:12] | set[11:6] | offset[5:0]

All three addresses map to the same set, with different
tags.

set[0x03]

+--------+--------+

| way 0 | way 1 |

+--------+--------+

| way 2 | way 3 |

+--------+--------+

A, B, and C fit simultaneously, so the second half of
A,B,C,A,B,C hits.

After access Ways occupied in
set 0x03

Hit/miss

A 1/4 miss

B 2/4 miss

C 3/4 miss

Dr Russ Ross (Computing) CS 2810 Spring 2026 11/22

Caching Set-associative cache

Same sequence, three organizations

Holding the access pattern fixed isolates the effect of organization.

Organization Misses Hits Conflict pressure Hardware cost

Direct-mapped 6 0 high low

Fully associative 3 3 very low high

4-way set-assoc 3 3 low moderate

Set-associative designs are widely used because they preserve most of the hit-rate benefit without fully associative lookup
cost.

Dr Russ Ross (Computing) CS 2810 Spring 2026 12/22

Caching Set-associative cache

Reading address fields like hardware

The address decoder always performs field extraction before
tag comparison.

For 4-way set-associative in this lecture:

• offset[5:0] selects byte position in line
• set[11:6] selects one set
• tag[31:12] is compared against tags in all ways of that set

31 12 11 6 5 0

+-----------------------------+----------+--------+

| tag | set | offset |

+-----------------------------+----------+--------+

Example with 0x1234_56A8:

• offset = lower 6 bits
• set = next 6 bits
• tag = upper 20 bits

This logic is simple in concept but heavily optimized in
physical layout and timing paths.

Dr Russ Ross (Computing) CS 2810 Spring 2026 13/22

Caching Behavior in code and systems
Behavior in code and systems

Miss classes and performance cliffs

Different misses have different causes, so mitigations differ
too.

Miss class Cause

Compulsory first touch

Capacity working set > cache

Conflict mapping collisions

Conflict misses are exactly what associativity is designed to
reduce.

As working set or stride increases, throughput often drops in
steps:

• L1-dominated region
• L2-dominated region
• L3-dominated region
• DRAM-dominated region

This step pattern is the main intuition behind the memory-
mountain benchmark.

Dr Russ Ross (Computing) CS 2810 Spring 2026 14/22

Caching Behavior in code and systems

Loop order and locality

Two loops can do identical arithmetic but induce very
different memory behavior.

Row-major traversal aligns with contiguous memory in C-
like layouts.

for (int i = 0; i < rows; i++) {

 for (int j = 0; j < cols; j++) {

 sum += a[i][j];

 }

}

This preserves spatial locality and helps hardware
prefetchers.

Column-wise traversal creates large strides on row-major
data.

for (int j = 0; j < cols; j++) {

 for (int i = 0; i < rows; i++) {

 sum += a[i][j];

 }

}

This tends to increase miss rate and memory-level stalls.

Dr Russ Ross (Computing) CS 2810 Spring 2026 15/22

Caching Real hardware context
Real hardware context

Representative cache structures (recent mainstream hardware)

Modern chips vary in details, but the hierarchy pattern is remarkably consistent.

Hardware L1 L2 L3 / LLC Comment

Intel Core i9-14900K split L1 per core 2 MB per P-core, 4 MB
per E-cluster

36 MB shared desktop hybrid core
design

AMD Ryzen 9 9950X 80 KB split L1 per core 1 MB per core 64 MB shared Zen 5 desktop

NVIDIA H100 up to 256 KB/SM
L1+shared

— 50 MB L2 GPU memory hierarchy

Private upper levels hide latency; shared lower levels reduce DRAM traffic and provide inter-core data sharing.

Dr Russ Ross (Computing) CS 2810 Spring 2026 16/22

Caching Real hardware context

Typical line sizes and associativity in practice

The specific parameters differ by vendor and level, but a few trends are common.

• 64-byte lines remain common in general-purpose CPUs.
• L1D is often around 4-way to 8-way.
• L2/L3 are often more associative than L1.
• True LRU is rare in large caches; pseudo-LRU variants are common.

When you benchmark real code, these parameters surface as hit-rate and bandwidth inflection points.

Dr Russ Ross (Computing) CS 2810 Spring 2026 17/22

Caching Writes in caches
Writes in caches

Why writes need separate policies

Reads are straightforward, but writes must define both
update timing and allocation behavior.

Two questions define write behavior:

1. On a write hit, do we update lower memory immediately?
2. On a write miss, do we bring the line into cache first?

Those choices produce the familiar policy pairs.

Common pairings in real systems:

• write-through + no-write-allocate (often in simpler
designs)

• write-back + write-allocate (common in high-performance
cores)

Coherence, bandwidth, and verification complexity all
influence the choice.

Dr Russ Ross (Computing) CS 2810 Spring 2026 18/22

Caching Writes in caches

Write-through vs write-back

Both policies are correct; they optimize for different system
goals.

Policy Behavior Typical tradeoff

Write-through update cache and
lower level on each
write

simpler state, higher
bandwidth use

Write-back mark line dirty,
defer lower-level
write until eviction

lower bandwidth,
more control
complexity

If a loop writes the same hot line 100 times:

• write-through may send about 100 lower-level writes
• write-back often sends about 1 write on eviction

That bandwidth difference is why write-back is common
in performance-oriented CPUs.

Dr Russ Ross (Computing) CS 2810 Spring 2026 19/22

Caching Writes in caches

Write-allocate vs no-write-allocate

Allocation policy on a write miss determines whether future
writes can hit locally.

Write-allocate pulls the line into cache, then writes it.

This is usually better when software will reuse nearby data
or repeatedly update the same line.

No-write-allocate (write-around) writes straight to lower
level.

This is often better for streaming output that is unlikely to
be read again soon.

Dr Russ Ross (Computing) CS 2810 Spring 2026 20/22

Caching Wrap-up
Wrap-up

Key points to carry forward

Caching decisions are design tradeoffs, and software behavior determines how those tradeoffs play out.

• Locality is the fundamental reason caches work.
• Address fields (tag, set/index, offset) define lookup behavior.
• Increasing associativity reduces conflicts but raises hardware cost.
• Set-associative caches are usually the practical sweet spot.
• Write policy choices strongly affect bandwidth and coherence complexity.

Dr Russ Ross (Computing) CS 2810 Spring 2026 21/22

Caching Wrap-up

Quick check questions

Use these to close the lecture or open discussion.

1. Why can two arrays far apart in address space still conflict in a direct-mapped cache?
2. If line size doubles, which address field must grow first?
3. When is no-write-allocate better than write-allocate?
4. Why does fully associative lookup generally cost more energy than set-associative lookup?

Dr Russ Ross (Computing) CS 2810 Spring 2026 22/22

	Caching
	Why caching exists
	Temporal locality (same data reused soon)
	Spatial locality (nearby data reused soon)

	Direct-mapped cache
	Fully associative cache
	Set-associative cache
	Behavior in code and systems
	Real hardware context
	Writes in caches
	Wrap-up

