
Computer Organization and Architecture
C types and expressions

Utah Tech University

Spring 2025

(Utah Tech University) CS 2810 Spring 2025 1 / 34

C types and expressions C overview

An example

#include <stdio.h>

double circularArea(double r);

int main(void) {
double radius = 1.0, area = 0.0;
printf(" Areas of Circles\n\n");
printf(" Radius Area\n"

"------------------------\n");
area = circularArea(radius);
printf("%10.1f %10.2f\n", radius, area);
radius = 5.0;
area = circularArea(radius);
printf("%10.1f %10.2f\n", radius, area);
return 0;

}

double circularArea(double r) {
const double pi = 3.1415926536;
return pi * r * r;

}

Notes

Header files
Preprocessor
Prototypes and forward/external references
main
printf
Variable declarations

The most common printf verbs:

%d, %u decimal integer
%x, %X, %o hexadecimal, octal
%f, %e, %g floats: 392.65, 3.9265e+2, shortest of %f/%e
%c single characacter
%s string
%p pointer address
%% literal percent sign (no operand)

(Utah Tech University) CS 2810 Spring 2025 2 / 34

C types and expressions C overview

Compiling

The compilation process:

1. Compile source file 1 (with headers, preprocessor)
Creates an object file with .o extension

2. Compile source file 2 (with headers, preprocessor)
Another object file

3. . . .
4. Link with standard library (and other libraries)

Output is an executable file, default a.out
Also called a binary
See also: /bin directory

Memory map

Top of memory
+---+
| Stack (grows down as functions are called) |
| ... |
+---+
| ... |
| Heap (grows up, arranged by malloc/free) |
+---+
| Data segment (arranged by linker) |
+---+
| Text segment (arranged by linker) |
+---+
| (unused addresses) |
+---+

Bottom of memory (address zero)

(Utah Tech University) CS 2810 Spring 2025 3 / 34

C types and expressions Statements

Expression statements

Any expression followed by a semicolon is a statement. This is normally only used when the expression has a side effect.

y = x; // An assignment
sum = a + b; // Calculation and assignment
++x;
printf("Hello, world\n"); // A function call

100; // Correct, but not very useful
y < x;

(void) unused variable; // suppress warnings about an unused variable

A statement can also consist of a semicolon by itself: this is called a null statement:

for (i = 0; s[i] != '\0'; i++)
;

(Utah Tech University) CS 2810 Spring 2025 4 / 34

C types and expressions Statements

Block statements

A compound statement, call a block for short, groups statements and declarations between braces to form a single statement.
Note that it is not terminated by a semicolon:

{
double result = 0.0, x = 0.0; // declarations
static long status = 0; // these variables are scoped
extern int limit; // to the current block

x++;
if (status == 0) { // new block

int i = 0; // i is scoped to the if block
while (status == 0 && i < limit) { // another new block

// ...
}

} else { // and another
// ...

}
}

(Utah Tech University) CS 2810 Spring 2025 5 / 34

C types and expressions Statements

while loops

A while loop executes a statement repeatedly as long as the controlling expression is true:

while (expression) statement

#include <stdio.h>

int main(void) {
double x = 0.0, sum = 0.0;
int count = 0;
printf("\t--- Calculate Averages ---\n");
printf("\nEnter some numbers:\n"

"(Type a letter to end your input)\n");
while (scanf("%lf", &x) == 1) {

sum += x;
count++;

}
if (count == 0)

printf("No input data!\n");
else

printf("The average of your numbers is %.2f\n", sum/count);
return 0;

}
(Utah Tech University) CS 2810 Spring 2025 6 / 34

C types and expressions Statements

for loops

A for loop has more loop logic contained in the statement itself:

for (expression1;expression2;expression3) statement
expression1: Initialization. Evaluated only once, before the first evaluation of the controlling expression, to perform any necessary
initialization
expression2: Controlling expression. Tested before each iteration. Loop execution ends when this expression evaluates to false.
expression3: Adjustment. An adjustment, such as incrementation of a counter, performed after each loop iteration and before
expression2 is tested again.

for (i = 0; i < LENGTH; i++)
arr[i] = 2*i;

for (;;) { ... }

for (; more to do(x);) { }

i = 0;
while (i < LENGTH) {

arr[i] = 2*i;
i++;

}

// starting with C99 you can declare a variable
// in place of expression1
for (int i = 0; i < LENGTH; i++)

arr[i] = 2*i;

for (int i = 0, j = strlen(str)-1; i < j; i++, j--)
ch = str[i], str[i] = str[j], str[j] = ch;

(Utah Tech University) CS 2810 Spring 2025 7 / 34

C types and expressions Statements

do while loops

The do . . . while loop is bottom driven

do statement while (expression);

The body statement is executed once before the controlling expression is evaluated for the first time, so at least one iteration of
the loop is always performed.

do {
int command = getCommand();
performCommand(command);

} while (command != END);

char *strcpy(char *s1, const char *s2) {
int i = 0;
do

s1[i] = s2[i];
while (s2[i++] != '\0');
return s1;

}

(Utah Tech University) CS 2810 Spring 2025 8 / 34

C types and expressions Statements

Nested loops

A loop body can be any simple or block statement and may include other loop statements.

void bubbleSort(float arr[], int len) {
int isSorted;
do {

isSorted = 1;
len--;
for (int i = 0; i < len; i++) {

if (arr[i] > arr[i+1]) {
isSorted = 0;
float temp = arr[i];
arr[i] = arr[i+1];
arr[i+1] = temp;

}
}

} while (!isSorted);
}

(Utah Tech University) CS 2810 Spring 2025 9 / 34

C types and expressions Statements

if statements

An if statement has the following form:

if (expression) statement1 [else statement2]

double power(double base, unsigned int exp) {
if (exp == 0) return 1.0;
else return base * power(base, exp-1);

}

If several if statements are nested, then an else clause always belongs to the last if (on the same block nesting level that
does not yet have an else clause. If there is any doubt or the nesting is complex, use a block and make sure your indentation
matches the code.

if (n > 0)
if (n%2 == 0)

puts("n is positive and even");
else

puts("n is positive and odd");

if (n > 0) {
if (n%2 == 0)

puts("n is positive and even");
} else

puts("n is negative or zero");

(Utah Tech University) CS 2810 Spring 2025 10 / 34

C types and expressions Statements

if statements

To select one of more than two alternative statements, if statements can be cascaded in an else if chain. Each new if
statement is simply nested in the else clause of the preceding if statement:

double spec = 10.0, measured = 10.3, diff;
/* ... */
diff = measured - spec;

if (diff >= 0.0 && diff < 0.5)
printf("Upward deviation: %.2f\n", diff);

else if (diff < 0.0 && diff > -0.5)
printf("Downward deviation: %.2f\n", diff);

else
printf("Deviation out of tolerance!\n");

(Utah Tech University) CS 2810 Spring 2025 11 / 34

C types and expressions Statements

switch statements

A switch statement causes a jump to one of several statements according to the value of an integer expression. The cases
must all be constants:

switch (expression) statement

switch (menu()) { // menu() returns an int
case 'a':
case 'A':

action1();
break;

case 'b':
case 'B':

action2();
break;

default:
putchar('\a');

}

Cases fall through so you must add a break statement to exit the switch
To declare variables in a case you must introduce a nested block

(Utah Tech University) CS 2810 Spring 2025 12 / 34

C types and expressions Statements

break

The break statement can occur only in the body of a loop or a switch statement and jumps to the first statement after the loop
or switch in which it is immediately contained:

break;

int getScores(short scores[], int len) {
puts("Please enter scores between 0 and 100.\n"

"Press <Q> and <Enter> to quit.\n");
int i;
for (i = 0; i < len; i++) {

printf("Score No. %2d: ", i+1);
if (scanf("%hd", &scores[i]) != 1)

break;
if (scores[i] < 0 || scores[i] > 100) {

printf("%d: Value out of range.\n", scores[i]);
break;

}
}
return i;

}

(Utah Tech University) CS 2810 Spring 2025 13 / 34

C types and expressions Statements

continue

The continue statement can be used only within the body of a loop, and causes the program to skip over the rest of the
current iteration of the loop:

continue;

int getScores(short scores[], int len) {
puts("Please enter scores between 0 and 100.\n"

"Press <Q> and <Enter> to quit.\n");
int i;
while (i < len) {

printf("Score No. %2d: ", i+1);
if (scanf("%hd", &scores[i]) != 1)

break;
if (scores[i] < 0 || scores[i] > 100) {

printf("%d: Value out of range.\n", scores[i]);
continue; // discard this value and read in another

}
i++;

}
return i;

}

In a while or do ... while loop, the program jumps to the next evaluation of the controlling expression
In a for loop, the program jumps to the evaluation of the third expression (the increment operation, typically)

(Utah Tech University) CS 2810 Spring 2025 14 / 34

C types and expressions Statements

goto

The goto statement causes an unconditional jump to another statement in the same function. The destination is specified by
the name of a label.

bool calculate(double arr[], int len, double *res) {
bool error = false;
if (len < 1 || len > MAX ARR LENGTH)

goto error exit;
for (int i = 0; i < len; i++) {

// do stuff that might set error
if (error)

goto error exit;
// continue calculation and set *res

}
return true;

error exit:
*res = 0.0;
return false;

}

You should never use goto to jump into a block from
outside if the jump skips over declarations or
statements that initialize variables
Code that makes heavy use of goto statements is hard
to read and should be avoided. The most common uses
for goto are:

Consolidating exits from a function (see example)
Simulating a break or continue from an inner loop
directly to an outer loop

(Utah Tech University) CS 2810 Spring 2025 15 / 34

C types and expressions Statements

return

The return statement ends execution of the current function and jumps back to where the function was called:

return [expression];

The return value is converted to the function’s return type if necessary.

int min(int a, int b) {
if (a < b) return a;
else return b;

}

See also

int min(int a, int b) {
return a < b ? a : b;

}

For functions with void return type the expression is omitted.

(Utah Tech University) CS 2810 Spring 2025 16 / 34

C types and expressions Expressions and operators

Operators

Precedence Operators Associativity

1. Postfix operators: [] () . -> ++ -- (type name){list} Left to right
2. Unary operators: ++ -- ! ˜ + - * & sizeof Right to left
3. The cast operator: (type name) Right to left
4. Multiplicative operators: * / % Left to right
5. Additive operators: + - Left to right
6. Shift operators: << >> Left to right
7. Relational operators: < <= > >= Left to right
8. Equality operators: == != Left to right
9. Bitwise AND: & Left to right
10. Bitwise exclusive OR: ˆ Left to right
11. Bitwise OR: | Left to right
12. Logical AND: && Left to right
13. Logical OR: || Left to right
14. The conditional operator: ? : Right to left
15. Assignment operators: = += -= *= /= %= &= ˆ= |= <<= >>= Right to left
16. The comma operator: , Left to right

(Utah Tech University) CS 2810 Spring 2025 17 / 34

C types and expressions Expressions and operators

Memory addressing operators

Operator Meaning Example Result

& Address of &x Pointer to x
* Indirection operator *p The object or function that p

points to
[] Subscripting x[y] The element with index y in the

array x
. Structure or union member designator x.y The member named y in the

structure or union x
-> Structure or union member designator by reference p->y The member named y in the

structure or union that p points
to

float x, *ptr;
ptr = &x; // OK: Make ptr point to x.
ptr = &(x+1); // Error: (x+1) is not an lvalue

*ptr = 1.7; // Assign the value 1.7 to the variable x
++(*ptr); // and add 1 to it. (note: parentheses are superfluous)

(Utah Tech University) CS 2810 Spring 2025 18 / 34

C types and expressions Expressions and operators

Element of arrays

The subscript operator [] allows you to access individual elements of an array. In its simplest form:

myarray[i] // note: arrays always start with element 0

An expression of the form x[y] is equivalent to

(*((x)+(y)))

Either x or y must have a type that is a pointer to an object type, and the other must have an integer type. This follows the
rules of pointer arithmetic and means that x[y] and y[x] are equivalent.

#include <stdlib.h>
#define ARRAY SIZE 100
// ...

double *pArray = NULL; int i = 0;
pArray = malloc(ARRAY SIZE * sizeof(double));
if (pArray != NULL) {

for (i = 0; i < ARRAY SIZE; i++)
pArray[i] = (double) rand() / RAND MAX;

}
// note: pArray[i] or i[pArray] or *(pArray + i)

(Utah Tech University) CS 2810 Spring 2025 19 / 34

C types and expressions Expressions and operators

Compound literals

A compound literal lets you define literals with any object type and consiste of an object type in parentheses followed by an
initialization list in braces:

float *fPtr = (float []){ -0.5, 0.0, +0.5 };

#include "database.h"
// includes: struct Pair { long key; char value[32]; };
insertPair(&db, &(struct Pair){ 1000L, "New York JFK Airport" });

(Utah Tech University) CS 2810 Spring 2025 20 / 34

C types and expressions C types

Integer types

The basic signed integer types

Type	Synonyms
signed char |
int | signed, signed int
short | short int, signed short, signed short int
long | long int, signed long, signed long int
long long | long long int, signed long long, signed long long int

For each signed type, there is a corresponding unsigned type of the same memory size and alignment

Type	Synonyms
_Bool | bool (defined in stdbool.h)
unsigned char |
unsigned int | unsigned, unsigned int
unsigned short | unsigned short int
unsigned long | unsigned long int
unsigned long long | unsigned long long int

Note: char can be signed or unsigned. Be explicit if it matters.
(Utah Tech University) CS 2810 Spring 2025 21 / 34

C types and expressions C types

Integers with exact width

The header stdint.h defines some aliases for when width matters

Type Meaning Implementation

intN t, uintN t An integer type whose width is exactly N bits Optional
int leastN t, uint leastN t An integer type whose width is a least N bits Required for N=8,

16, 32, 64
int fastN t, uint fastN t The fastest process with width at least N bits Required for N=8,

16, 32, 64
intmax t, uintmax t The widest integer type implemented Required
intptr t, uintptr t An integer type wide enough to store a pointer Optional

(Utah Tech University) CS 2810 Spring 2025 22 / 34

C types and expressions C types

Floating-point types

Floating-point types:

float: 32 bits, ±3.4×10ˆ38, 6–7 digits of precision
double: 64 bits, ±1.7×10ˆ308, 15–16 digits of precision
long double: 80 bits (we will mostly ignore these)

(Utah Tech University) CS 2810 Spring 2025 23 / 34

C types and expressions C types

Enumerated types

A special type of integer where you name and list all of the defined values:

enum color { black, red, green, yellow, blue, white=7, gray };

Here color is the tag and the color names are the enumeration constants.

To use it:

enum color bgColor = blue, fgColor = yellow;
void setFgColor(enum color fgc);

Different constants may have the same value:

enum { OFF, ON, STOP=0, GO=1, CLOSED=0, OPEN=1 };

Note there is no tag. This is useful when you just want to define some constants, but not necessarily a new type to go with
them.

(Utah Tech University) CS 2810 Spring 2025 24 / 34

C types and expressions C types

The void type

The void type specifier means no type is available. This is useful:

// in function declarations
void perror(const char *);

// to explicitly discard a value
(void) printf("I don't need the return value\n");

// pointers to void
void *malloc(size t size);
void *realloc(void *ptr, size t size);
void free(void *ptr);

(Utah Tech University) CS 2810 Spring 2025 25 / 34

C types and expressions Literals

Literals

A literal value is a value that is written directly, as opposed to one that is computed by an expression.

(Utah Tech University) CS 2810 Spring 2025 26 / 34

C types and expressions Literals

Integer literals

Integers can be written in:

decimal (starts with a non-zero digit)
hexadecimal (starts with 0x or 0X
octal (starts with a 0)

Constants usually default to int, but if the value is too big the compiler will choose a bigger size. You can also be explicit with
suffixes:

Integer constant Type

0x200 int
512U unsigned int
0L long
0Xf0fUL unsigned long
0777LL long long
0xAAAllu unsigned long long

(Utah Tech University) CS 2810 Spring 2025 27 / 34

C types and expressions Literals

Float literals

A float literal consists of a sequence of decimal digits with a decimal point, optionally with an exponent:

Floating-point constant Value

10.0 10
2.32E5 2.34 × 10ˆ5
67e-12 67.0 × 10ˆ-12

The default size of a constant is a double. You can append f or F to get a single-precision float instead.

(Utah Tech University) CS 2810 Spring 2025 28 / 34

C types and expressions Literals

Character literals

A character constant is written inside single-quote marks:

'a' '0' '*'

A few characters are written using a backslash escape sequence:

'\'' '\\' '\n' '\t'

A character constant has type int, and the value is the ASCII code of the character (there are some other cases that we will
ignore here).

int c = getchar();
if (c != EOF && c >= '0' && c <= '9') {

// the user entered a digit
}

You can also enter an explicit numeric code:

'\xA3' // the character with value 163

(Utah Tech University) CS 2810 Spring 2025 29 / 34

C types and expressions Literals

Escape sequences

Escape sequence Value Action when printed

\' single quotation mark (')
\" double quotation mark (")
\? question mark (?)
\\ backslash character (\)
\a alert beep or other signal
\b backspace move left one character
\f form feed move to next page/clear

screen
\n line feed (newline) move to beginning of

next line
\r carriage return move to beginning of

current line
\t horizontal tab move to next horizontal

tab stop
\v vertical tab move to next vertical tab

stop
\o, \oo, or \ooo (octal digits) character with given octal value
\xh[h...] (hex digits) character with given hex value
\uhhhh, \Uhhhhhhhh character with given universal char name

(Utah Tech University) CS 2810 Spring 2025 30 / 34

C types and expressions Literals

String literals

A string literal consists of a sequence of characters (and/or escape sequences) enclosed in double quotation marks:

"Hello, world!\n"

A string literal can be used to initialize a character array:

char msg1[100] = "the array will have space for 100 characters";
char msg2[] = "this array will be just the right size";

It can also be used to initialize a character pointer:

char *msg3 = "this is a string constant and msg3 points to it";

Multiple string literals in the source will be contatenated at compile time into a single string:

printf("ID | Name\n"
"-----|-------\n");

#define MY EMAIL ADDRESS "jdoe@example.com"
printf("Email me at " MY EMAIL ADDRESS " with suggestions\n");

(Utah Tech University) CS 2810 Spring 2025 31 / 34

C types and expressions Type conversions

Type conversions

An expression may involve values of different types:

double dVar = 2.5;
dVar *= 3;
if (dVar < 10L) { ... }

At each step, the compiler converts the two values into one compatible type before performing the operation. This only works
for scalar types (integers, floats, booleans, pointers) not structs.

You can explicitly type cast a value:

int sum = 22, count = 5;
double mean = (double) sum / count;

Type casting has the same precedence level as most unary operators (which beats most binary operators) so sum is first
converted to a double and then the division is performed. A few basic rules help understand what happens next:

Operations between two integers will always yield an integer
Operations between two floats will always yield a float
Operations that mix an integer and a float will yield a float

(Utah Tech University) CS 2810 Spring 2025 32 / 34

C types and expressions Type conversions

Implicit type conversion

The hierarchy of types:

Any two unsigned integer types have different conversion ranks. If one is wider than the other, then it has a higher rank.

Each signed integer type has the same rank as the corresponding unsigned type. The type char has the same rank as
signed char and unsigned char.

The standard integer types are ranked in the order:

_Bool < char < short < int < long < long long

Every enumerated type has the same rank as its corresponding integer type

The floating-point types are ranked in the following order:

float < double < long double

The lowest-ranked floating-point type, float, has a higher rank than any integer type.

(Utah Tech University) CS 2810 Spring 2025 33 / 34

C types and expressions Type conversions

Implicit type conversion

There are many details, but the general goal is to pick the type that can represent a wider range of values. A couple exceptions:

Converting to a float can lose precision for large numbers
Converting to an unsigned can lose negative numbers

A few other special cases. The common theme is that data must fit in its container:

Assignments and initializations: the value of the right operand is always converted to the type of the left operand
Function calls: arguments are converted to the types of the formal parameters
Return statements: value is converted to the function’s return type

(Utah Tech University) CS 2810 Spring 2025 34 / 34

	C types and expressions
	C overview
	Statements
	Expressions and operators
	C types
	Literals
	Type conversions

