
CS	1410:	Asteroids	Part	1
Nearly	everyone	has	played	or	at	least	heard	of	the	famous	arcade	game	Asteroids.	But,	if	you	have	not,	you
can	play	it	here.	The	game	involves	a	player-controlled	spaceship	that	can	turn	left	or	right,	accelerate
forward,	and	shoot	bullets.	A	collection	of	rocks	(asteroids)	move	through	space,	potentially	on	a	collision
course	with	the	spaceship.	If	a	collision	between	the	spaceship	and	a	rock	occurs,	then	the	spaceship	is
destroyed.	If	a	bullet	collides	with	a	rock,	the	rock	and	bullet	are	both	destroyed.	The	objective	of	the	game
is	to	eliminate	all	of	the	rocks,	by	successfully	shooting	them	from	the	spaceship,	before	a	devastating
collision	incident	occurs.

Assignment
Your	assignment	is	to	recreate	a	simple	Asteroids	game	using	Python	and	Pygame.	The	assignment	will
consist	of	two	sequential	parts.	For	this	first	part,	you	are	required	to	implement	the	following	features	of
the	game:

1.	 A	player-controlled	spaceship	that	can	turn	in	either	direction,	to	point	in	any	direction,	and	accelerate
forward.	All	three	spaceship	functions	should	be	controlled	by	keyboard	or	mouse	input	from	the	user.
Remember,	the	ship	may	only	accelerate	in	the	forward	direction	(relative	to	the	direction	that	the	ship
is	currently	oriented);	it	may	not	ever	accelerate	in	the	backward	direction.	The	spaceship	should	be
drawn	using	a	simple	polygon	that	resembles	a	spaceship.	Either	use	the	original	game	for	inspiration,
or	use	your	own	creativity.	The	polygon	should	rotate	visually	on	the	screen	according	to	the	rotation
commands	given	by	the	player.	Also,	if	the	spaceship	moves	off	the	screen,	then	it	should	instantly
reappear	on	the	opposite	side	of	the	screen,	still	traveling	in	the	same	direction	and	at	the	same	speed.
This	should	apply	to	all	four	sides	of	the	screen	(left/right	and	top/bottom).

2.	 A	number	of	rocks	that	move	freely	through	space,	at	random	directions	and	speeds.	Rocks	will	rotate	at
a	fixed	rate;	they	simply	move	along	a	straight	line,	in	a	random	direction,	never	accelerating.	The
shape	and	size	of	each	rock	should	also	be	randomly	different.	The	rocks	should	be	drawn	using	a
simple	polygon	that	resembles	an	asteroid	(i.e.	a	rock).	Again,	feel	free	to	use	the	original	game	for
inspiration.	Just	like	the	spaceship,	rocks	should	reappear	on	the	opposite	side	of	the	screen	when	they
travel	off	the	screen.

For	part	1	of	the	assignment,	no	additional	functionality	is	required	(e.g.	shooting	bullets	and	destroying
rocks	or	colliding	with	rocks).	You	will	add	these	features	in	part	2.	You	are	welcome	to	continue	working	on
additional	features	once	you	complete	the	requirements	for	part	1,	but	it	is	your	responsibility	to	complete
the	requirements	for	part	1	of	the	assignment	first,	and	submit	it	by	the	due	date.

For	this	assignment,	you	are	required	to	demonstrate	use	of	the	object	oriented	principles	inheritance,
polymorphism	and	aggregation	when	implementing	the	classes	that	have	been	designed	for	you	to	represent
the	game	and	its	various	components.	For	instance,	the	 Movable 	class	implements	the	game	logic	for	moving
an	object	(and	enabling	it	to	wrap	around	the	screen	edges,	etc.).

You	should	use	our	 PyGame 	starter	kit.

Part	1	Unit	Tests

Required	Classes
The	required	classes	are	listed	in	the	UML	Diagram.	Not	all	of	the	methods	will	be	described	in	detail	here.
For	example,	most	getter	methods	will	not	be	listed.	However,	if	they	are	in	the	UML	diagram,	they	are
required.	If	you	have	questions	about	the	required	functionality,	please	ask	questions	in	class	or	in	the
discussion	forums.

	This	browser	does	not	support	PDFs.	Please	download	the	PDF	to	view	it:
Download	PDF.

Movable	Class

http://www.freeasteroids.org/
http://www.pygame.org/
https://www.cs.utahtech.edu/cs/1410/labs/pygame-starter-lean.zip
https://www.cs.utahtech.edu/cs/1410/labs/test_all_asteroids_part1.zip
https://www.cs.utahtech.edu/cs/1410/labs/asteroids-part1-uml.pdf
https://www.cs.utahtech.edu/cs/1410/labs/asteroids-part1-uml.pdf


The	 Movable 	class	handles	most	aspects	of	objects	that	have	a	location	and	may	be	able	to	move.

Movable	Data	Members

mX 	and	 mY 	are	the	object’s	position	on	the	window,	measured	in	pixels.	 mX 	must	be	greater	or	equal	to
0	and	less	than	 mWorldWidth .	 mY 	must	be	greater	or	equal	to	0	and	less	than	 mWorldHeight .

mDX 	and	 mDY 	are	the	object’s	speed	in	the	horizontal	and	vertical	directions,	measured	in	pixels	per
second.

mWorldWidth 	and	 mWorldHeight 	are	the	dimensions	of	the	window,	measured	in	pixels.

Movable	Methods

__init__ 	creates	and	initializes	the	data	members	directly	from	the	parameters.	Assumes	all	parameter
values	are	valid.

move 	updates	the	values	of	 mX 	and	 mY 	using	the	speeds	 mDX ,	 mDY 	and	the	amount	of	elapsed	time,	 dt .	If
the	object	moves	off	of	the	window,	updates	the	coordinates	to	have	the	object	appear	on	the	other	side
of	the	window.	For	example,	moving	off	of	the	right	side	will	cause	the	object	to	appear	on	the	left	side.

accelerate 	is	an	abstract	method.	It	should	 raise	NotImplementedError .

evolve 	is	an	abstract	method.	It	should	 raise	NotImplementedError .

draw 	is	an	abstract	method.	It	should	 raise	NotImplementedError .

Rotatable	Class
The	 Rotatable 	class	adds	the	ability	to	rotate	objects,	using	inheritance	to	keep	all	of	the	functionality	of	the
Movable 	class.	It	also	implements	the	 accelerate 	method,	making	it	possible	to	change	the	motion	of	objects.

Rotatable	Data	Members

mRotation 	is	the	object’s	orientation,	measured	in	degrees.	0	degrees	is	to	the	right,	90	degrees	is
down,	etc.	Note	that	this	is	not	the	direction	of	travel.	Direction	of	travel	is	controlled	by	 mDX 	and	 mDY
from	 Movable .

Rotatable	Methods

__init__ 	uses	contructor	chaining	to	initialize	the	 Movable 	data	members,	and	sets	the	object’s	rotation,
assuming	the	input	values	are	all	valid.

rotate 	adds	to	the	object’s	orientation.	Note	that	the	value	of	 delta_rotation 	may	be	positive	or
negative.	Adding	a	negative	number	is	fine.	That	reduces	the	value.	This	method	must	make	sure	that
the	rotation	is	at	least	0	and	is	less	than	360.	If	the	rotation	goes	out	of	this	range,	then	update	it
appropriately.	For	example	-10	degrees	should	be	updated	to	350,	and	375	degrees	should	be	updated	to
15	degrees.

splitDeltaVIntoXAndY 	receives	a	 rotation 	in	degrees,	and	a	 delta_velocity 	in	pixels	per	second.	The
method	returns	a	2-tuple	of	the	amount	of	velocity	change	in	the	horizontal	and	vertical	directions.	The
easiest	way	to	do	this	is	using	the	 math 	module’s	functions	for	converting	degrees	to	radians	and
calculating	the	cosine	and	sine	values	of	angles.	Pay	attention	to	the	discussion	in	class,	and	ask
questions.

accelerate 	splits	 delta_velocity 	into	horizontal	and	vertical	components	using	other	methods	and	the
object’s	current	rotation.	It	then	adds	to	the	object’s	 mDX 	and	 mDY 	to	change	the	speed	of	movement.

rotatePoint 	receives	 x 	and	 y ,	the	coordinates	of	an	arbitrary	point.	It	returns	new	values	for	 x 	and	 y
as	a	2-tuple.	The	new	values	are	rotated	about	the	origin	based	on	the	object’s	current	rotation.	This	is
done	using	the	trigonometric	functions	of	the	 math 	class.	Join	in	the	class	discussion,	take	notes,	and
ask	questions.

translatePoint 	receives	 x 	and	 y ,	the	coordinates	of	an	arbitrary	point.	It	returns	new	values	for	 x 	and
y 	as	a	2-tuple.	The	new	values	are	calculated	by	adding	the	object’s	 mX 	and	 mY 	values.

rotateAndTranslatePoint 	receives	 x 	and	 y ,	the	coordinates	of	an	arbitrary	point.	It	returns	new	values
for	 x 	and	 y 	as	a	2-tuple.	The	new	values	are	calculated	by	first	rotating	the	point	and	then	translating
the	rotated	coordinates.

rotateAndTranslatePointList 	receives	a	list	of	points.	The	list	is	a	normal	Python	list.	Each	point	in	the



list	is	a	2-tuple	of	 x 	and	 y 	coordinates.	The	method	constructs	a	new	list	of	points	to	return.	The	new
list	has	each	point	rotated	and	translated.

Polygon	Class
The	 Polygon 	class	adds	the	ability	to	track	the	shape	of	an	object	as	a	list	of	points	and	the	ability	to	draw
the	object	to	the	 Rotatable 	class.

Polygon	Data	Members

mOriginalPolygon 	is	a	list	of	2-tuples,	where	each	2-tuple	is	a	pair	of	 x 	and	 y 	coordinates.	This	polygon
should	be	described	with	values	that	are	centered	on	the	origin	(x	0,	y	=	0).

mColor 	is	a	PyGame	color,	a	3-tuple	of	integers	in	the	range	0-255	describing	the	red,	green	and	blue
channels	of	the	color.

Polygon	Methods

__init__ 	uses	contructor	chaining	to	initialize	the	 Rotatable 	data	members,	and	sets	the	object’s
polygon	to	the	empty	list	and	the	color	to	white.

setPolygon 	receives	a	list	of	points.	It	assigns	this	to	the	correct	data	member,	assuming	the	list	is
valid.

setColor 	receives	a	color.	It	assigns	this	to	the	correct	data	member,	assuming	the	value	is	valid.

draw 	gets	a	copy	of	the	original	polygon	list	of	points	that	has	been	rotated	and	translated.	Then,	uses
the	PyGame	functions	to	draw	the	polygon	described	by	the	rotated,	translated	outline.

Ship	Class
The	 Ship 	class	adds	the	ability	to	evolve	(update)	like	a	ship	to	the	 Polygon 	class.

Ship	Data	Members

None

Ship	Methods

__init__ 	uses	contructor	chaining	to	initialize	the	 Polygon 	data	members,	and	sets	the	object’s	polygon
to	the	shape	of	the	ship.	The	ship	should	not	be	moving	and	should	have	a	rotation	of	0.

evolve 	causes	the	ship	to	move.

Rock	Class
The	 Rock 	class	adds	the	ability	to	evolve	(update)	like	a	rock	to	the	 Polygon 	class.

Rock	Data	Members

mSpinRate 	The	rate	that	the	rock	spins.	Measured	in	degrees	per	second.	May	be	positive	or	negative.

Rock	Methods

__init__ 	uses	contructor	chaining	to	initialize	the	 Polygon 	data	members,	and	sets	the	object’s	polygon
to	the	shape	of	a	random	rock.	Rocks	are	initialized	not	moving,	with	a	rotation	randomly	selected	from
0.0	to	359.9.	Also,	sets	the	spin	rate	for	the	rock	to	random	floating	point	value	in	the	range	-90	degrees
per	second	to	+90	degrees	per	second.	Finally,	rocks	are	finally	accelerated	a	random	amount	from	10
to	20	pixels	per	second.

createRandomPolygon 	creates	a	list	of	2-tuples	with	the	coordinates	of	the	outline	of	a	random	rock	shape,
and	returns	the	point	list.	The	angles	of	the	points	must	be	equally	spread	around	a	circle.	For	example,
if	there	are	5	points,	then	the	points	will	be	360	/	5	=	72	degrees	apart.	Each	point’s	distance	from	the
origin	is	randomly	chosen	to	be	between	70%	and	130%	of	the	 radius 	paramter.

evolve 	causes	the	rock	to	move	and	spin.

Asteroids	Class
The	 Asteroids 	class	is	the	overall	game	class	that	creates	and	controls	all	objects.



Asteroids	Data	Members

mWorldWidth ,	 mWorldHeight 	the	dimensions	of	the	window,	in	pixels.

mShip 	the	 Ship 	object	created.

mRocks 	a	list	of	all	 Rock 	objects	created.

mObjects 	a	list	of	all	objects	created.

Asteroids	Methods

__init__ 	Sets	the	data	members,	including	creating	a	 Ship 	and	10	 Rock s.

getShip ,	 getRocks 	and	 getObjects 	return	the	appropriate	data	members.

turnShipLeft 	reduces	the	ship’s	rotation	by	 delta_rotation .

turnShipRight 	increases	the	ship’s	rotation	by	 delta_rotation .

accelerateShip 	accelerates	the	ship	by	 delta_velocity .

evolve 	evolves	all	objects	by	 dt .

draw 	draws	all	objects.

Hints
Refer	to	the	Pygame	documentation	to	understand	which	parameters	are	necessary	when	calling	each	of
the	Pygame	draw	methods.	Specifically,	you	should	be	interested	in	 pygame.draw 	and	 pygame.Rect .

When	creating	colors,	use	a	helpful	tool	to	determine	the	RGB	values.	Here	are	two	good	options:
color.adobe.com	and	colorpicker.com

http://www.pygame.org/docs/
https://color.adobe.com/
http://www.colorpicker.com/

